数学建模——Topsis法
数模评价类(2)——Topsis法
概述
Topsis:Technique for Order Preference by Similarity to Ideal Solution
也称优劣解距离法,该方法的基本思想是,通过计算每个备选方案与理想解和负理想解之间的距离,从而评估每个方案的优劣。
案例
已知下列20条河流几项指标数据,指标有含氧量、PH值、细菌总数、植物性营养物量,试对20条河流的水质进行评价和排序。
思考:适不适合使用层次分析法进行评价?
答:不适合。原因:1、决策层的方案数为20>15,很难构造通过一致性检验的判断矩阵,并且一致性检验中RI可查的最大n为15;2、若使用层次分析法,没有充分利用已知方案各向指标数据进行评价。
数据集基本概念:
如案例中所给数据表格构成一个典型的数据集,每一行代表一个记录/数据项/对象,
第一列构成索引列(index),除每一列外每一列代表一个指标/特征
Topsis步骤
Step1:正向化处理
指标分类:
在该案例中,极大型:含氧量,极小型:细菌含量,中间型:PH值,区间型:营养量
正向化处理即将所有指标转化为极大型指标
符号说明:x代表数据集中对应特征的一列, x i x_i xi表示该列第i行元素
极小型->极大型
x i ^ = m a x { x } − x i \hat{x_{i}}=max\{x\}-x_{i}\\ xi^=max{x}−xi
如果所有元素为正数,可取倒数实现正向化
中间型->极大型
x i ^ = 1 − x i − x b e s t m a x { x i − x b e s t } \hat{x_i}=1-\frac{x_i-x_{best}}{max\{x_i-x_{best}\}} xi^=1−max{xi−xbest}xi−xbest
注:这种正向化处理将数据值映射到[0,1],数据越趋近中间理想值,映射值越趋近于1
区间型->极大型
注:区间型指标正向化需考虑左右两侧,类似中间型指标的正向化方法,当两侧值越趋近理想趋近边界值时,映射值越趋近于1
Step2:正向化矩阵标准化
标准化处理是矩阵预处理中基础性的步骤,其目的是消除不同指标量纲的影响,这里采用向量归一化(也称为L2正则化,即将每一列向量转化为单位特征列向量)
Step3:计算得分并归一化
Topsis优劣解的核心思想就是先确定两个正(负)理想的数据向量,然后将每个对象数据向量对其评分。由于我们已经将所有指标正向化,因此抽出每一列的最大值构成最大值向量 Z + Z_{+} Z+,抽出每一列的最小值构成最小值向量 Z − Z_{-} Z−,对于每个评价对象数据向量 Z i Z_i Zi,我们可以用向量距离公式计算 Z i Z_i Zi与 Z + Z_{+} Z+和 Z − Z_{-} Z−的距离 D i + 和 D i − D_i^{+}和D_i^{-} Di+和Di−,然后得到每个对象未归一化的评分
S i = D i − D i − + D i + S_i=\frac{D_i^{-}}{D_i^{-}+D_i^{+}} Si=Di−+Di+Di−
归一化后就得到各对象最终评分
考虑指标权重系数,对算法进行修改
权重系数可由构造判断矩阵法得到,也可以由熵权法【后续讨论】得到
运行python代码结果:
简要分析结果可知I、J、K河流水质最好,N河流水质明显最差
相关文章:

数学建模——Topsis法
数模评价类(2)——Topsis法 概述 Topsis:Technique for Order Preference by Similarity to Ideal Solution 也称优劣解距离法,该方法的基本思想是,通过计算每个备选方案与理想解和负理想解之间的距离,从而评估每个…...

Electron-vue 框架升级 Babel7 并支持electron-preload webapck 4 打包过程记录
前言 我这边一直用的electron-vue框架是基于electron 21版本的,electron 29版本追加了很多新功能,但是这些新功能对开发者不友好,对electron构建出来的软件,使用者更安全,所以,我暂时不想研究electron 29版…...

github仓库自动同步到gitee
Github Actions是Github推出的自动化CI/CD的功能,我们将使用Github Actions让Github仓库同步到Gitee 同步的原理是利用 SSH 公私钥配对的方式拉取 Github 仓库的代码并推送到 Gitee 仓库中,所以我们需要以下几个步骤 生成 SSH 公私钥添加公钥添加私钥配…...

汽车仪表板可识别安全气囊,安全带,ABS,邮箱,灯等多种告警参数,YOLO,VOC,COCO三种方式标记的数据集整理
关于数据集介绍: 汽车仪表板可识别安全气囊,安全带,ABS,邮箱,灯等多种告警参数,YOLO,VOC,COCO三种方式标记的数据集。 可识别常见的: 安全气囊和安全带系统 ,…...

springboot370高校宣讲会管理系统(论文+源码)_kaic
毕 业 设 计(论 文) 高校宣讲会管理系统设计与实现 摘 要 传统办法管理信息首先需要花费的时间比较多,其次数据出错率比较高,而且对错误的数据进行更改也比较困难,最后,检索数据费事费力。因此,…...

GoReplay开源工具使用教程
目录 一、GoReplay环境搭建 1、Mac、Linux安装GoReplay环境 二、GoReplay录制与重播 1、搭建练习接口 2、录制命令 3、重播命令 三、GoReplay单个命令 1、常用命令 2、其他命令 3、命令示例 4、性能测试 5、正则表达式 四、gorepaly组合命令 1、组合命令实例 2、…...

UE4_材质节点_有关距离的_流体模拟
一、材质节点介绍: 特别注意:距离场需要独立显卡支持。 1、什么是距离场? 想象一下空间中只有两个实体, 一个球,一个圆柱. 空间由无数个点组成, 取其中任何一个点, 比如,它跟球面的最近距离是3, 跟圆柱面的最近距离是2, 那么这个点的值就…...
虚拟现实(VR)与增强现实(AR)有什么区别?
虚拟现实(Virtual Reality,VR)与增强现实(Augmented Reality,AR)在多个方面存在显著差异。以下是对这两者的详细比较: 一、概念定义 虚拟现实(VR): 是一种…...
浏览器中输入一个URL后,按下回车后发生了什么
URL ,统一资源定位符, 简单点就是网址 ip 或域名 端口号 资源位置 参数 锚点 大致流程 URL 解析DNS 查询TCP 连接处理请求接受响应渲染页面 1 .输入一个网址之后,首先浏览器通过查询 DNS ,查找这个 URL 的 IP …...
GNOME(GNU Network Object Model Environment)
定义与概述 GNOME(GNU Network Object Model Environment)是一种广泛使用的桌面环境。它是一个自由软件项目,旨在为操作系统提供一个直观、易用且功能强大的图形用户界面(GUI)。GNOME主要运行在类UNIX操作系统上&#…...
源码分析之Openlayers中的Collection类
概述 在Map类中,有一种高频出现的类Collection(即集合),比如Map类中interaction、controls和overlay的定义初始化和一些操作调用都和Collection有关。本文主要介绍 Openlayers 中Collection类的实现以及Collection类的事件机制。 源码剖析 Collection类 Collection类本质…...

Spring AI 框架介绍
Spring AI是一个面向人工智能工程的应用框架。它的目标是将Spring生态系统的设计原则(如可移植性和模块化设计)应用于AI领域,并推广使用pojo作为AI领域应用的构建模块。 概述 Spring AI 现在(2024/12)已经支持语言,图像…...
【Oracle11g SQL详解】UPDATE 和 DELETE 操作的正确使用
UPDATE 和 DELETE 操作的正确使用 UPDATE 和 DELETE 是 Oracle 11g 中用于修改和删除表中数据的重要 SQL 语句。在操作时,需特别注意数据筛选条件的准确性,以避免意外更改或删除数据。本文将详细介绍这两种语句的用法、注意事项及相关案例。 一、UPDATE…...
Advanced Macro Techniques in C/C++: `#`, `##`, and Variadic Macros
Advanced Macro Techniques in C/C: #, ##, and Variadic Macros 文章目录 Advanced Macro Techniques in C/C: #, ##, and Variadic MacrosIllustrative Examples of Macros Using # and ##Stringification ExampleToken Concatenation ExampleNested Macros Example Key Conc…...

Maven、JAVAWeb、Servlet
知识点目标 1、MavenMaven是什么Maven项目的目录结构Maven的Pom文件Maven的命令Maven依赖管理Maven仓库JavaWeb项目 2.网络基础知识 3、ServletMaven Maven是什么 Maven是Java的项目管理工具,可以构建,打包,部署项目,还可以管理…...

分布式资源调度——yarn 概述(资源调度基本架构和高可用的实现)
此文章是学习笔记,图片均来源于B站:哈喽鹏程 yarn详细介绍 1、yarn 简介1.1 yarn的简介1.2 yarn 的基本架构1.3. yarn 的高可用 2、yarn 调度策略、运维、监控2.1 yarn 的调度策略2.1.1 FIFO scheduler(先进先出)2.1.2 容量调度2.1.3 公平调度 2.2 yarn…...

网页开发的http基础知识
请求方式-GET:请求参数在请求行中,没有请求体,如:/brand/findAll?nameoPPo&status1。GET请求大小在浏览器中是有限制的请求方式-POST:请求参数在请求体中,POST请求大小是没有限制的 HTTP请求…...
学习方法的进一步迭代————4
今天又在怀疑第二大脑的可靠程度 为什么呢? 还是因为自己没记住东西,感觉没学到东西。 其实自己知道大脑本就不应该用来存放知识而是用来思考知识,但是自己还是陷在里面了,我觉得其本质不是因为认知还不够,也不是因为还有点不适…...

数据科学家创建识别假图像的工具
Pixelator v2 是一款用于识别假图像的工具。它采用了全新的图像真实性技术组合,其能力超出了人眼所能看到的范围。 它能够以比传统方法更高的准确度识别图像中的细微差异,并且已被证明能够检测到小至 1 个像素的交替。 使用 SSIM 和 Pixelator v2 突出显…...

使用 GORM 与 MySQL 数据库进行交互来实现增删改查(CRUD)操作
1、安装 GORM 和 MySQL 驱动 新版本库是gorm.io/gorm go get -u gorm.io/gormgo get -u gorm.io/driver/mysql2、连接 MySQL 数据库 package mainimport ("gorm.io/driver/mysql""gorm.io/gorm""log" )func main() {// 数据源名称 (DSN) 格式&a…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...

CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...

Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...