UIE与ERNIE-Layout:智能视频问答任务初探
内容来自百度飞桨ai社区UIE与ERNIE-Layout:智能视频问答任务初探:
如有侵权,请联系删除
1 环境准备
In [2]
# 安装依赖库
!pip install paddlenlp --upgrade
!pip install paddleocr --upgrade
!pip install paddlespeech --upgrade
In [82]
import os
import cv2
import numpy as np
from tqdm import tqdm
from pprint import pprint
from paddlenlp import Taskflow
from IPython.display import Video
from paddleocr import PaddleOCR, draw_ocr
2 信息抽取方法
在PaddleNLP为我们提供的各类解决方案中,面对领域多变、任务多样、数据稀缺的挑战,UIE具有较强的适应性。其中,uie-x-base
模型面向纯文本和文档场景的抽取式模型,支持中英文的文档/图片/表格的端到端信息抽取。
比如下面这个视频,如果我们将其内容进行抽帧,得到的一系列的图片直接送入**uie-x-base
** 模型中进行信息抽取,由于视频中传输的知识结构清晰,模型对 某一步具体是什么内容这里的问题,能较为准确地给出反馈结果。
In [17]
Video('video01-clip.mp4')
<IPython.core.display.Video object>
In [13]
# 定义实体关系抽取的schema——也就是视频问答的问题
schema = ['what is the 3rd step']
ie = Taskflow("information_extraction", schema=schema, model="uie-x-base", ocr_lang="en", schema_lang="en")
[2023-02-05 19:22:16,119] [ INFO] - We are using <class 'paddlenlp.transformers.ernie_layout.tokenizer.ErnieLayoutTokenizer'> to load '/home/aistudio/.paddlenlp/taskflow/information_extraction/uie-x-base'.
In [19]
src_video = cv2.VideoCapture('video01-clip.mp4')
fps = int(src_video.get(cv2.CAP_PROP_FPS))
total_frame = int(src_video.get(cv2.CAP_PROP_FRAME_COUNT)) # 计算视频总帧数prob = 0
output = ''
for i in tqdm(range(total_frame)): success, frame = src_video.read()# 对传入视频抽帧if i % (fps) == 10:if success:# 保存图片cv2.imwrite(str(i) + '.jpg', frame)# 送入UIE模型进行文档信息抽取result = ie({"doc": str(i) + '.jpg'})if len(result[0]) > 0:# 只保留识别结果中,置信度最高的那个if result[0][schema[0]][0]['probability'] > prob:prob = result[0][schema[0]][0]['probability']output = result[0][schema[0]][0]['text']# 输出结果pprint(result[0][schema[0]][0])
34%|███▎ | 172/510 [00:01<00:01, 183.01it/s]
{'bbox': [[594, 30, 724, 80]],'end': 8,'probability': 0.8937306903884945,'start': 2,'text': 'UNPACK'}
74%|███████▍ | 379/510 [00:02<00:00, 169.88it/s]
{'bbox': [[603, 138, 810, 183]],'end': 32,'probability': 0.9051069707893973,'start': 20,'text': 'SAFETy CHECK'}
100%|██████████| 510/510 [00:02<00:00, 175.77it/s]
上面视频问答的标准答案为:
Q: What is the third step?
A: safety check
In [ ]
# 删除多余图片
!rm *.jpg
我们把上面这个过程简单梳理下,主要包括下面几个步骤:
- 定义要抽取的schema——直接把问题作为信息抽取的内容
- 视频抽帧,保存图片到本地
- 送入UIE模型进行信息抽取
- 逐帧比较抽取结果,剔除重复、不正确结果
- 保存并输出正确结果以及对应图片(便于用户进行核对确认)
下面,我们就将这个思路写成一个视频问答处理函数,并验证效果。
In [50]
def get_video_info(video_path, question):# 定义实体关系抽取的schemaschema = [question]ie = Taskflow("information_extraction", schema=schema, model="uie-x-base", ocr_lang="en", schema_lang="en")src_video = cv2.VideoCapture(video_path)fps = int(src_video.get(cv2.CAP_PROP_FPS))total_frame = int(src_video.get(cv2.CAP_PROP_FRAME_COUNT)) # 计算视频总帧数prob = 0output = ''pre_frame = 10for i in tqdm(range(total_frame)): success, frame = src_video.read()# 记录保存的前一个最优结果图片if i % (fps) == 10:if success:cv2.imwrite(str(i) + '.jpg', frame)result = ie({"doc": str(i) + '.jpg'})if len(result[0]) > 0:if result[0][schema[0]][0]['probability'] > prob:if os.path.exists(str(pre_frame) + '.jpg'):os.remove(str(pre_frame) + '.jpg')prob = result[0][schema[0]][0]['probability']output = result[0][schema[0]][0]['text']pprint(result[0][schema[0]][0])pre_frame = ielse: os.remove(str(i) + '.jpg')elif i!=10:os.remove(str(i) + '.jpg')return output
In [ ]
# 显示要进行问答的视频
Video('video03-clip.mp4')
问答的标准答案:
Q: What is the purpose of the red laser sights?
A: Help you accurately aim at the target
In [71]
get_video_info('video03-clip.mp4', 'What is the purpose of the red laser sights?')
[2023-02-05 22:00:07,586] [ INFO] - We are using <class 'paddlenlp.transformers.ernie_layout.tokenizer.ErnieLayoutTokenizer'> to load '/home/aistudio/.paddlenlp/taskflow/information_extraction/uie-x-base'.28%|██▊ | 126/450 [00:03<00:04, 72.93it/s]
{'bbox': [[528, 21, 649, 44], [274, 55, 695, 77]],'end': 53,'probability': 0.9742606425060707,'start': 17,'text': 'HELP YOUACCURATELY AIM AT THE TARGET'}
38%|███▊ | 172/450 [00:03<00:02, 101.23it/s]
{'bbox': [[528, 21, 649, 44], [274, 55, 695, 77]],'end': 53,'probability': 0.974278300524599,'start': 17,'text': 'HELP YOUACCURATELY AIM AT THE TARGET'}
43%|████▎ | 195/450 [00:04<00:02, 112.72it/s]
{'bbox': [[528, 21, 649, 44], [274, 54, 694, 75]],'end': 52,'probability': 0.9762005052161093,'start': 17,'text': 'HELP YOUACCURATELY AIMAT THE TARGET'}
100%|██████████| 450/450 [00:05<00:00, 83.42it/s]
'HELP YOUACCURATELY AIMAT THE TARGET'
我们观察video03-clip.mp4
这个视频的问答抽取结果,可以发现虽然识别结果是正确的,但是直接输出的OCR识别结果后续还需要进行文本矫正。
3 ERNIE-Layout方法
ERNIE-Layout是依托PaddleNLP对外开源业界最强的多语言跨模态文档预训练模型。ERNIE-Layout以文心文本大模型ERNIE为底座,融合了文本、图像、布局等信息进行跨模态联合建模,创新性引入布局知识增强,提出阅读顺序预测、细粒度图文匹配等自监督预训练任务,升级空间解偶注意力机制,在各数据集上效果取得大幅度提升。
参考资料:ERNIE-Layout: Layout-Knowledge Enhanced Multi-modal Pre-training for Document Understanding
ERNIE-Layout同样可以使用Taskflow一键调用。
In [56]
from pprint import pprint
from paddlenlp import Taskflowdocprompt = Taskflow("document_intelligence", lang='en')
pprint(docprompt([{"doc": "217.jpg", "prompt": ["What is the purpose of the red laser sights?"]}]))
[2023-02-05 21:49:22,279] [ INFO] - We are using <class 'paddlenlp.transformers.ernie_layout.tokenizer.ErnieLayoutTokenizer'> to load 'ernie-layoutx-base-uncased'. [2023-02-05 21:49:22,283] [ INFO] - Already cached /home/aistudio/.paddlenlp/models/ernie-layoutx-base-uncased/vocab.txt [2023-02-05 21:49:22,285] [ INFO] - Already cached /home/aistudio/.paddlenlp/models/ernie-layoutx-base-uncased/sentencepiece.bpe.model [2023-02-05 21:49:22,932] [ INFO] - tokenizer config file saved in /home/aistudio/.paddlenlp/models/ernie-layoutx-base-uncased/tokenizer_config.json [2023-02-05 21:49:23,014] [ INFO] - Special tokens file saved in /home/aistudio/.paddlenlp/models/ernie-layoutx-base-uncased/special_tokens_map.json
[{'prompt': 'What is the purpose of the red laser sights?','result': [{'end': 17,'prob': 0.97,'start': 9,'value': 'ACCURATELY AIM AT THE TARGET'}]}]
In [67]
def get_docprompt(video_path, question):# 定义实体关系抽取的schemaschema = [question]ie = Taskflow("document_intelligence", lang='en')src_video = cv2.VideoCapture(video_path)fps = int(src_video.get(cv2.CAP_PROP_FPS))total_frame = int(src_video.get(cv2.CAP_PROP_FRAME_COUNT)) # 计算视频总帧数prob = 0output = ''pre_frame = 10for i in tqdm(range(total_frame)): success, frame = src_video.read()# 记录保存的前一个最优结果图片if i % (fps) == 10:if success:cv2.imwrite(str(i) + '.jpg', frame)result = ie([{"doc": str(i)+".jpg", "prompt": schema}])if len(result[0]) > 0:if result[0]['result'][0]['prob'] > prob:if os.path.exists(str(pre_frame) + '.jpg'):os.remove(str(pre_frame) + '.jpg')prob = result[0]['result'][0]['prob']output = result[0]['result'][0]['value']pprint(result[0]['result'][0])pre_frame = ielse: os.remove(str(i) + '.jpg')elif i!=10:os.remove(str(i) + '.jpg')return output
In [70]
get_docprompt('video01-clip.mp4', 'What is the third step?')
[2023-02-05 21:59:20,521] [ INFO] - We are using <class 'paddlenlp.transformers.ernie_layout.tokenizer.ErnieLayoutTokenizer'> to load 'ernie-layoutx-base-uncased'. [2023-02-05 21:59:20,525] [ INFO] - Already cached /home/aistudio/.paddlenlp/models/ernie-layoutx-base-uncased/vocab.txt [2023-02-05 21:59:20,527] [ INFO] - Already cached /home/aistudio/.paddlenlp/models/ernie-layoutx-base-uncased/sentencepiece.bpe.model [2023-02-05 21:59:21,160] [ INFO] - tokenizer config file saved in /home/aistudio/.paddlenlp/models/ernie-layoutx-base-uncased/tokenizer_config.json [2023-02-05 21:59:21,163] [ INFO] - Special tokens file saved in /home/aistudio/.paddlenlp/models/ernie-layoutx-base-uncased/special_tokens_map.json45%|████▌ | 231/510 [00:00<00:00, 347.51it/s]
{'end': 11, 'prob': 1.0, 'start': 9, 'value': 'SAFETy CHECK'}
100%|██████████| 510/510 [00:01<00:00, 270.32it/s]
'SAFETy CHECK'
In [68]
get_docprompt('video03-clip.mp4', "What is the purpose of the red laser sights?")
[2023-02-05 21:57:12,703] [ INFO] - We are using <class 'paddlenlp.transformers.ernie_layout.tokenizer.ErnieLayoutTokenizer'> to load 'ernie-layoutx-base-uncased'. [2023-02-05 21:57:12,707] [ INFO] - Already cached /home/aistudio/.paddlenlp/models/ernie-layoutx-base-uncased/vocab.txt [2023-02-05 21:57:12,709] [ INFO] - Already cached /home/aistudio/.paddlenlp/models/ernie-layoutx-base-uncased/sentencepiece.bpe.model [2023-02-05 21:57:13,338] [ INFO] - tokenizer config file saved in /home/aistudio/.paddlenlp/models/ernie-layoutx-base-uncased/tokenizer_config.json [2023-02-05 21:57:13,341] [ INFO] - Special tokens file saved in /home/aistudio/.paddlenlp/models/ernie-layoutx-base-uncased/special_tokens_map.json0%| | 1/450 [00:00<01:04, 6.91it/s]
{'end': 7, 'prob': 0.86, 'start': 5, 'value': 'RANGEFINDER RETICLE'}
2%|▏ | 11/450 [00:00<00:10, 42.43it/s]
{'end': 7, 'prob': 0.87, 'start': 7, 'value': 'RANGEFINDER'}
8%|▊ | 34/450 [00:00<00:03, 106.16it/s]
{'end': 7, 'prob': 0.88, 'start': 7, 'value': 'RANGEFINDER'}
13%|█▎ | 57/450 [00:00<00:02, 141.83it/s]
{'end': 7, 'prob': 0.89, 'start': 7, 'value': 'RANGEFINDER'}
28%|██▊ | 126/450 [00:00<00:01, 191.73it/s]
{'end': 17, 'prob': 0.96, 'start': 9, 'value': 'ACCURATELY AIM AT THE TARGET'}
33%|███▎ | 149/450 [00:00<00:01, 194.31it/s]
{'end': 17, 'prob': 0.97, 'start': 9, 'value': 'ACCURATELY AIM AT THE TARGET'}
100%|██████████| 450/450 [00:02<00:00, 212.87it/s]
'ACCURATELY AIM AT THE TARGET'
虽然在video01-clip.mp4
和video03-clip.mp4
两个视频的问答结果上,ERNIE-Layout和信息抽取结果大同小于,甚至video03-clip.mp4
的问答结果离标准答案还有一点点缺漏,但是读者可以比较下面video02-clip.mp4
和video07-clip.mp4
的问答结果,会发现ERNIE-Layout在真正的上下文理解上,明显要更强一些。
In [ ]
# 显示要进行问答的视频
Video('video02-clip.mp4')
Q1: How many bolts are there?
A1: 8
In [72]
get_docprompt('video02-clip.mp4', "How many bolts are there?")
[2023-02-05 22:08:41,260] [ INFO] - We are using <class 'paddlenlp.transformers.ernie_layout.tokenizer.ErnieLayoutTokenizer'> to load 'ernie-layoutx-base-uncased'. [2023-02-05 22:08:41,265] [ INFO] - Already cached /home/aistudio/.paddlenlp/models/ernie-layoutx-base-uncased/vocab.txt [2023-02-05 22:08:41,267] [ INFO] - Already cached /home/aistudio/.paddlenlp/models/ernie-layoutx-base-uncased/sentencepiece.bpe.model [2023-02-05 22:08:41,890] [ INFO] - tokenizer config file saved in /home/aistudio/.paddlenlp/models/ernie-layoutx-base-uncased/tokenizer_config.json [2023-02-05 22:08:41,893] [ INFO] - Special tokens file saved in /home/aistudio/.paddlenlp/models/ernie-layoutx-base-uncased/special_tokens_map.json2%|▏ | 11/537 [00:00<00:10, 49.61it/s]
{'end': 0, 'prob': 0.98, 'start': 0, 'value': '8SOLIDSTEELLOCKINGBOLTS'}
23%|██▎ | 126/537 [00:00<00:02, 192.12it/s]
{'end': 0, 'prob': 0.99, 'start': 0, 'value': '8SOLIDSTEELLOCKING'}
100%|██████████| 537/537 [00:02<00:00, 201.76it/s]
'8SOLIDSTEELLOCKING'
4 字幕抽取的特殊处理
有的视频是带字幕的,而且问答内容只在字幕中,视频其它位置的文字反而会形成严重干扰,这时候在读取图片的时候限定字幕范围,可以很好地提升问答结果的准确程度。
In [79]
def get_docprompt_v2(video_path, question):# 定义实体关系抽取的schemaschema = [question]ie = Taskflow("document_intelligence", lang='en')src_video = cv2.VideoCapture(video_path)fps = int(src_video.get(cv2.CAP_PROP_FPS))total_frame = int(src_video.get(cv2.CAP_PROP_FRAME_COUNT)) # 计算视频总帧数prob = 0output = ''pre_frame = 10for i in tqdm(range(total_frame)): success, frame = src_video.read()# 记录保存的前一个最优结果图片if i % (fps) == 10:if success:# 限定范围只抽取字幕cv2.imwrite(str(i) + '.jpg', frame[-180:-30:])result = ie([{"doc": str(i)+".jpg", "prompt": schema}])if len(result[0]) > 0:if result[0]['result'][0]['prob'] > prob:if os.path.exists(str(pre_frame) + '.jpg'):os.remove(str(pre_frame) + '.jpg')prob = result[0]['result'][0]['prob']output = result[0]['result'][0]['value']pprint(result[0]['result'][0])pre_frame = ielse: os.remove(str(i) + '.jpg')elif i!=10:os.remove(str(i) + '.jpg')return output
In [76]
# 显示要进行问答的视频
Video('video07-clip.mp4')
<IPython.core.display.Video object>
Q: What does Treasure Race mean?
A: The hunt for the treasure of Gold Roger.
In [80]
get_docprompt_v2('video07-clip.mp4', "What does Treasure Race mean?")
[2023-02-05 22:23:35,360] [ INFO] - We are using <class 'paddlenlp.transformers.ernie_layout.tokenizer.ErnieLayoutTokenizer'> to load 'ernie-layoutx-base-uncased'. [2023-02-05 22:23:35,364] [ INFO] - Already cached /home/aistudio/.paddlenlp/models/ernie-layoutx-base-uncased/vocab.txt [2023-02-05 22:23:35,366] [ INFO] - Already cached /home/aistudio/.paddlenlp/models/ernie-layoutx-base-uncased/sentencepiece.bpe.model [2023-02-05 22:23:36,011] [ INFO] - tokenizer config file saved in /home/aistudio/.paddlenlp/models/ernie-layoutx-base-uncased/tokenizer_config.json [2023-02-05 22:23:36,013] [ INFO] - Special tokens file saved in /home/aistudio/.paddlenlp/models/ernie-layoutx-base-uncased/special_tokens_map.json22%|██▏ | 133/597 [00:00<00:01, 255.63it/s]
{'end': 13,'prob': 0.95,'start': 0,'value': 'The hunt for the treasureof Gold Roger!'}
100%|██████████| 597/597 [00:01<00:00, 305.63it/s]
'The hunt for the treasureof Gold Roger!'
5 需要结合时序的视频问答
还有一种更加复杂的情况,就是要结合出现文字/字幕的时序信息进行问答。
In [ ]
# 显示要进行问答的视频
Video('video05-clip.mp4')
Q: What is the first step to do a fast healing?
A: Clean the cut or scrape.
比如上面这个视频,问答内容与是fast healing的处理步骤,但是视频帧里,步骤只有文字,而不像第一个视频一样有1、2、3、4……,这时候用文档抽取或ERNIE-Layout就傻眼了,因为对着一张图片怎么也回答不出来。此时,就需要把读取到的文字都拼接起来,得到时序相关的文字信息。
In [ ]
ocr = PaddleOCR(use_angle_cls=False, lang="en")
similarity = Taskflow(task="text_similarity", mode="fast", max_seq_len=16, lang="en")
In [182]
src_video = cv2.VideoCapture('video05-clip.mp4')
fps = int(src_video.get(cv2.CAP_PROP_FPS))
total_frame = int(src_video.get(cv2.CAP_PROP_FRAME_COUNT)) # 计算视频总帧数save_text0 = []
for i in tqdm(range(total_frame)): success, frame = src_video.read()if i % (fps) == 10:line_text = []if success:# 排除干扰信息,只抽取部分画面result = ocr.ocr(frame[30:180:], cls=True)for idx in range(len(result)):res = result[idx]for line in res:if len(line[1][0]) > 1:line_text.append(line[1][0])line_res = ' '.join(line_text)save_text0.append(line_res)
In [177]
save_text = []
for i in save_text0:if i != '':save_text.append(i)
In [178]
# 结果去重
final_text =list(set(save_text))
final_text.sort(key=save_text.index)
In [179]
final_text = ','.join(final_text)
In [180]
final_text
'3 Steps to Fast Healing,Clean the cut or scrape,Treat the Wound with a topical antibiotic,Cover the cut or scrape'
完成上述工作后,看着final_text
这段文字,总算可以进行问答了。不过,直接用信息抽取的预训练模型还是得不到结果,我们可以稍微调整下,增加关键词。等到后面赛题后续训练集公布后,重新微调训练模型,识别效果必然会提升不少。
In [172]
# 定义实体关系抽取的schema
schema = ['What is the first step to do a healing?']
ie = Taskflow("information_extraction", schema=schema, model="uie-x-base")
ie('3 Steps to Fast Healing, first Clean the cut or scrape,second Treat the Wound with a topical antibiotic,then Cover the cut or scrape')
[2023-02-05 23:13:12,541] [ INFO] - We are using <class 'paddlenlp.transformers.ernie_layout.tokenizer.ErnieLayoutTokenizer'> to load '/home/aistudio/.paddlenlp/taskflow/information_extraction/uie-x-base'.
[{'What is the first step to do a healing?': [{'text': 'Clean the cut or scrape','start': 31,'end': 54,'probability': 0.9410384130303413}]}]
相关文章:

UIE与ERNIE-Layout:智能视频问答任务初探
内容来自百度飞桨ai社区UIE与ERNIE-Layout:智能视频问答任务初探: 如有侵权,请联系删除 1 环境准备 In [2] # 安装依赖库 !pip install paddlenlp --upgrade !pip install paddleocr --upgrade !pip install paddlespeech --upgrade In …...

数据结构:树
树的基本定义: 树是一种数据结构,它是由n(n>1)个有限节点组成一个具有层次关系的集合。把它叫做 “树” 是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点: …...
docker 怎么启动nginx
在Docker中启动Nginx容器是一个简单的过程。以下是启动Nginx容器的步骤: 拉取Nginx镜像: 首先,你需要从Docker Hub拉取Nginx的官方镜像。使用以下命令: docker pull nginx运行Nginx容器: 使用docker run命令来启动一个…...

【智商检测——DP】
题目 代码 #include <bits/stdc.h> using namespace std; const int N 1e510, M 110; int f[N][M]; int main() {int n, k;cin >> n >> k;for(int i 1; i < n; i){int x;cin >> x;f[i][0] __gcd(f[i-1][0], x);for(int j 1; j < min(i, k)…...

YOLOv11改进,YOLOv11添加SAConv可切换空洞卷积,二次创新C3k2结构
摘要 作者提出的技术结合了递归特征金字塔和可切换空洞卷积,通过强化多尺度特征学习和自适应的空洞卷积,显著提升了目标检测的效果。 理论介绍 空洞卷积(Atrous Convolution)是一种可以在卷积操作中插入“空洞”来扩大感受野的技术,更有效地捕捉到图像中的大范围上下文…...

使用R语言优雅的获取任意区域的POI,道路,河流等数据
POI是“Polnt of Information”的缩写,中文可以翻译为“信息点”。是地图上任何非地理意义的有意义的点,如商店,酒吧,加油站,医院,车站等。POI,道路网,河流等是我们日常研究中经常需…...
【设计模式】工厂方法模式 在java中的应用
文章目录 1. 引言工厂方法模式的定义 2. 工厂方法模式的核心概念工厂方法模式的目的和原理与其他创建型模式的比较(如简单工厂和抽象工厂) 3. Java中工厂方法模式的实现基本的工厂方法模式结构示例代码:创建不同类型的日志记录器 4. 工厂方法…...

Pytest框架学习20--conftest.py
conftest.py作用 正常情况下,如果多个py文件之间需要共享数据,如一个变量,或者调用一个方法 需要先在一个新文件中编写函数等,然后在使用的文件中导入,然后使用 pytest中定义个conftest.py来实现数据,参…...
【面试开放题】挫折、问题、擅长、应用技能
1. 项目中遇到的最大挫折是什么?你是如何应对的? 解答思路: 这个问题通常考察你的问题解决能力、抗压能力和团队协作精神。回答时,可以从以下几个角度展开: 问题背景: 描述项目中遇到的具体挑战。是技术难…...
CTF-PWN: 全保护下格式化字符串利用 [第一届“吾杯”网络安全技能大赛 如果能重来] 赛后学习(没思路了)
通过网盘分享的文件:如果能重来.zip 链接: https://pan.baidu.com/s/1XKIJx32nWVcSpKiWFQGpYA?pwd1111 提取码: 1111 --来自百度网盘超级会员v2的分享漏洞分析 格式化字符串漏洞,在printf(format); __int64 sub_13D7() {char format[56]; // [rsp10h] [rbp-40h]…...

C++学习日记---第16天
笔记复习 1.C对象模型 在C中,类内的成员变量和成员函数分开存储 我们知道,C中的成员变量和成员函数均可分为两种,一种是普通的,一种是静态的,对于静态成员变量和静态成员函数,我们知道他们不属于类的对象…...
SOA、分布式、微服务之间的关系和区别?
在当今的软件开发领域,SOA(面向服务架构)、分布式系统和微服务是三个重要的概念。它们各自有着独特的特性和应用场景,同时也存在着密切的关系。以下是关于这三者之间关系和区别的详细分析: 关系 分布式架构的范畴&…...

java基础概念46-数据结构1
一、引入 List集合的三种实现类使用了不同的数据结构! 二、数据结构的定义 三、常见的数据结构 3-1、栈 特点:先进后出,后进先出。 java内存容器: 3-2、队列 特点:先进先出、后进后出。 栈VS队列-小结 3-3、数组 3-…...
Node.js-Mongodb数据库
MongoDB MongoDB是什么? MongoDB是一个基于分布式文件存储的数据库 数据库是什么? 数据库(DataBase)是按照数据结构来组织、存储和管理数据的应用程序(软件) 数据库作用? 对数据进行增、删…...

STM32 ADC --- 知识点总结
STM32 ADC — 知识点总结 文章目录 STM32 ADC --- 知识点总结cubeMX中配置注解单次转换模式、连续转换模式、扫描模式单通道采样的情况单次转换模式:连续转换模式: 多通道采样的情况禁止扫描模式(单次转换模式或连续转换模式)单次…...

技术创新与人才培养并重 软通动力子公司鸿湖万联亮相OpenHarmony人才生态大会
11月27日,由开放原子开源基金会指导,OpenHarmony项目群工作委员会主办的OpenHarmony人才生态大会2024在武汉隆重举办。软通动力子公司鸿湖万联作为OpenHarmony项目群A类捐赠人应邀出席。大会期间,鸿湖万联不仅深度参与了OpenHarmony人才生态年…...
兔子繁衍问题
7-2 兔子繁衍问题 分数 15 全屏浏览 切换布局 作者 徐镜春 单位 浙江大学 一对兔子,从出生后第3个月起每个月都生一对兔子。小兔子长到第3个月后每个月又生一对兔子。假如兔子都不死,请问第1个月出生的一对兔子,至少需要繁衍到第几个月时兔…...
汉代风云人物 1晁错
晁错曾是汉景帝的老师。汉景帝登基后,晁错提出削藩建议,这一举措遭到诸多藩国诸侯的强烈反对,由此引发了紧张局势。 袁盎此前曾担任吴国的宰相,晁错觉得袁盎与吴国等藩国关系密切,很可能知晓藩王们谋反的相关情况却没…...

学习threejs,使用specularMap设置高光贴图
👨⚕️ 主页: gis分享者 👨⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨⚕️ 收录于专栏:threejs gis工程师 文章目录 一、🍀前言1.1 ☘️THREE.MeshPhongMaterial高…...
【UE5 C++】判断两点连线是否穿过球体
目录 前言 方法一 原理 代码 测试 结果 方法二 原理 一、检查连线与球体的相交情况 二、检查距离与球体半径的关系 三、检查连线与球体的相交 代码 前言 通过数学原理判断空间中任意两点的连线是否穿过球体,再通过射线检测检验算法的正确性。 方法一 …...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...
libfmt: 现代C++的格式化工具库介绍与酷炫功能
libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库,提供了高效、安全的文本格式化功能,是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全:…...