当前位置: 首页 > news >正文

AIGC 与艺术创作:变革与机遇

在当今数字化时代,人工智能生成内容(AIGC)正以惊人的速度重塑着艺术创作的格局,为艺术家们带来了令人振奋的新机遇。

一.AIGC 的崛起与艺术领域的变革

随着人工智能技术的不断进步,AIGC 逐渐在艺术领域崭露头角。它依托强大的机器学习算法和深度学习模型,能够分析大量的艺术作品数据,并从中学习各种风格、技巧和表现形式。

例如,OpenAI 的 DALL・E 2 是一款强大的图像生成模型。艺术家可以输入描述 “一只穿着太空服的猫在月球上漫步”,DALL・E 2 就能生成一幅非常逼真且富有创意的图像。这一技术突破使得艺术创作不再局限于传统的手工绘制,而是可以通过算法来实现。艺术家们可以利用这些工具来快速探索不同的创意方向,为自己的创作提供新的灵感来源。

传统艺术创作往往受到各种限制,如技术水平、时间成本和材料资源等。而 AIGC 为艺术家们提供了一种突破这些限制的途径。在绘画领域,艺术家不再需要花费大量时间和精力去掌握复杂的绘画技巧,AIGC 可以帮助他们快速生成初步的作品草图,然后在此基础上进行进一步的细化和完善。

二.AIGC 在不同艺术形式中的应用

1.绘画与视觉艺术

AIGC 在绘画和视觉艺术领域的应用最为广泛。通过图像生成模型,艺术家可以创造出各种风格的绘画作品,从写实主义到抽象艺术,从印象派到现代主义。

一些艺术家利用 AIGC 生成的图像作为创作的起点,然后通过手工绘制或数字绘画的方式对其进行进一步的加工和修饰,创造出独特的混合艺术作品。此外,AIGC 还可以用于艺术展览的策划和设计,为观众带来全新的视觉体验。

比如,利用一些开源的图像生成工具,艺术家可以输入特定的风格关键词,如 “海上日出的油画”,生成的图像可以作为展览的背景装饰,为展览增添独特的氛围。

2.音乐创作

AIGC 在音乐创作领域也有着巨大的潜力。通过分析大量的音乐作品数据,AIGC 可以生成各种风格的音乐片段,包括古典音乐、流行音乐、电子音乐等。

作曲家可以利用 AIGC 生成的音乐作为灵感来源,或者将其与自己的创作相结合,创造出更加丰富多样的音乐作品。同时,AIGC 还可以用于音乐教育,帮助学生更好地理解音乐理论和创作技巧。

以下是一个用 Python 的 Magenta 库生成音乐的简单示例代码:

import magenta.music as mm# 创建一个随机的旋律序列
melody = mm.Melody()
for _ in range(16):note = mm.NoteSequence.Note(pitch=mm.utilities.randint(60, 72), start_time=_ * 0.5, end_time=(_ + 1) * 0.5, velocity=80)melody.notes.append(note)# 使用 MelodyRNN 模型生成新的旋律
melody_rnn = mm.MelodyRNN()
generated_melody = melody_rnn.generate(melody, temperature=1.0)# 将生成的旋律保存为 MIDI 文件
mm.notebook_utils.play_sequence(generated_melody)
mm.midi_io.note_sequence_to_midi_file(generated_melody, 'generated_melody.mid')

三.AIGC 为艺术创作带来的机遇

1.激发创意灵感

AIGC 可以为艺术家们提供源源不断的创意灵感。通过分析大量的艺术作品数据,AIGC 可以生成各种新颖的创意和表现形式,帮助艺术家们打破思维定式,开拓新的创作思路。

例如,艺术家可以输入一些关键词或特定的艺术风格,让 AIGC 生成相关的图像或音乐片段,从中获取灵感,激发自己的创作欲望。

2.提高创作效率

AIGC 可以大大提高艺术创作的效率。在传统艺术创作中,艺术家需要花费大量的时间和精力去完成作品的构思、绘制和修改等过程。而 AIGC 可以在短时间内生成大量的初步作品,为艺术家提供更多的选择和参考。

例如,在平面设计领域,设计师可以利用 AIGC 生成的设计方案快速完成客户的需求,提高工作效率。同时,AIGC 还可以帮助艺术家们快速尝试不同的创意和表现形式,减少创作过程中的试错成本。

总结

总之,AIGC 的出现为艺术创作带来了前所未有的变革和机遇。它不仅拓展了艺术创作的边界,还为艺术家们提供了更多的可能性和创作空间。

相关文章:

AIGC 与艺术创作:变革与机遇

在当今数字化时代,人工智能生成内容(AIGC)正以惊人的速度重塑着艺术创作的格局,为艺术家们带来了令人振奋的新机遇。 一.AIGC 的崛起与艺术领域的变革 随着人工智能技术的不断进步,AIGC 逐渐在艺术领域崭露头角。它依…...

【Axios】如何在Vue中使用Axios请求拦截器

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…...

element Plus中 el-table表头宽度自适应,不换行

在工作中,使用el-table表格进行开发后,遇到了小屏幕显示器上显示表头文字会出现换行展示,比较影响美观,因此需要让表头的宽度变为不换行,且由内容自动撑开。 以下是作为工作记录,用于demo演示教程 先贴个…...

【Android】从事件分发开始:原理解析如何解决滑动冲突

【Android】从事件分发开始:原理解析如何解决滑动冲突 文章目录 【Android】从事件分发开始:原理解析如何解决滑动冲突Activity层级结构浅析Activity的setContentView源码浅析AppCompatActivity的setContentView源码 触控三分显纷争,滑动冲突…...

如何使用JDBC向数据库中插入日期数据???

在学习JDBC 的过程中很多小明有疑问在IDEA编辑器是如何插入一个日期类型的数据的,此篇一些方法希望可以帮助到你。 示例: import java.text.ParseException; import java.text.SimpleDateFormat; import java.sql.Date; import java.util.Scanner;publi…...

高频面试题(含笔试高频算法整理)基本总结回顾29

干货分享,感谢您的阅读! (暂存篇---后续会删除,完整版和持续更新见高频面试题基本总结回顾(含笔试高频算法整理)) 备注:引用请标注出处,同时存在的问题请在相关博客留言…...

Flink日志配置

所有Flink进程都会创建一个日志文本文件,其中包含进程中发生的各种事件的消息。这些日志可以深入了解Flink的内部工作原理,还可以用来检测问题(以警告/错误信息的形式),并帮助调试。 可以通过web界面的JobManager/TaskManager页面访问日志文件。使用的资源提供者(例如YA…...

论文 | EfficientRAG: Efficient Retriever for Multi-Hop Question Answering

1. 论文介绍与研究动机 本文提出了一个新的检索增强生成(RAG)方法——EfficientRAG,它专门用于解决复杂的多跳问题。在多跳问答中,问题的答案需要从多个信息源中检索并结合起来,远比单跳问题复杂,因此也更加…...

超越Hallo和AniPortrait?音频驱动肖像动画新方法LetsTalk

之前的文章中已经给大家介绍过许多关于音频驱动的肖像图像生成动画方法,感兴趣的小伙伴可以点击下面链接阅读~ 复旦开源Hallo:只需输入一段音频和一张照片就可以让人物说话。 开源EMO再升级!复旦|百度|南大推出Hallo2:可以生成4…...

手机LCD分区刷新技术介绍

分区刷新也称为分区变频,LCD分区刷新功能的目的是将屏幕分为上下半区,分区显示不同帧率,上方区块High Frame Rate,下方区块Low Frame Rate。使用者可以动态自定义上方高刷显示区的结尾位置。 当前的智能手机屏幕上,显示…...

WPF软件花屏的解决方法

Win10操作系统更新后,软件花屏了! WPF为啥还能出现花屏呢? 花屏是个什么现象? 即:WPF的界面不能正确渲染或及时刷新,导致整个界面会出现严重的残影,严重影响使用。 如果存在花屏&#xff0c…...

深度学习笔记——模型压缩和优化技术(蒸馏、剪枝、量化)

本文详细介绍模型训练完成后的压缩和优化技术:蒸馏、剪枝、量化。 文章目录 1. 知识蒸馏 (Knowledge Distillation)基本概念工作流程关键技术类型应用场景优势与挑战优势挑战 总结 2. 权重剪枝 (Model Pruning)基本原理二分类1. 非结构化剪枝(Unstructur…...

开发手札:Win+Mac下工程多开联调

最近完成一个Windows/Android/IOS三端多人网络协同项目V1.0版本,进入测试流程了。为了方便自测,需要用unity将一个工程打开多次,分别是Win/IOS/Android版本,进行多角色联调。 在Win开发机上,以Windows版本为主版…...

项目基于oshi库快速搭建一个cpu监控面板

后端&#xff1a; <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>com.github.oshi</groupId><artifactId>oshi-…...

【c语言】指针3

1、字符指针变量 指针类型中我们知道有一种为字符指针char*的指针类型&#xff0c;其使用方法如下&#xff1a; 上面我们是先将字符使用一个变量&#xff0c;然后将变量的地址传给一个字符指针变量&#xff0c;通过指针变 量实现了对这个字符的打印。还有下面的这种…...

【开源】A063—基于Spring Boot的农产品直卖平台的设计与实现

&#x1f64a;作者简介&#xff1a;在校研究生&#xff0c;拥有计算机专业的研究生开发团队&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的网站项目。 代码可以查看项目链接获取⬇️&#xff0c;记得注明来意哦~&#x1f339; 赠送计算机毕业设计600个选题ex…...

Can‘t find variable: token(token is not defined)

文章目录 例子 1&#xff1a;使用 var例子 2&#xff1a;使用 let 或 const例子 3&#xff1a;异步操作你的代码中的情况 Cant find variable: tokentoken is not defined源代码 // index.jsPage({data: {products:[],cardLayout: grid, // 默认卡片布局为网格模式isGrid: tr…...

【JavaEE 初阶】⽹络编程套接字

一、⽹络编程基础 1.应用层 操作系统提供的一组 api >socket api(传输层给应用层提供) 2.传输层 两个核心协议. TCPUDP 差别非常大,编写代码的时候,也是不同的风格 因此, socket api 提供了两套 TCP 有连接, 可靠传输, 面向字节流, 全双工 UDP …...

【Linux内核】Hello word程序

创建测试目录 mkdir -p ~/develop/kernel/hello-1 cd ~/develop/kernel/hello-1 创建MakeFile文件和内核.c文件 nano Makefile nano hello-1.c 编写内容 /* * hello-1.c - The simplest kernel module. */ #include <linux/module.h> /* Needed by all modules */…...

PHP 与 MySQL 搭配的优势

一、PHP 与 MySQL 搭配的优势 强大的动态网页开发能力 PHP 是一种服务器端脚本语言&#xff0c;能够生成动态网页内容。它可以根据用户的请求、数据库中的数据等因素&#xff0c;实时地生成 HTML 页面返回给客户端浏览器。而 MySQL 是一个流行的关系型数据库管理系统&#xf…...

深入浅出:PHP中的变量与常量全解析

文章目录 引言理解变量普通变量赋值操作变量间赋值引用赋值取消引用 可变变量预定义变量 理解常量声明常量使用define()函数const关键字 使用常量预定义常量 扩展话题&#xff1a;作用域与生命周期实战案例总结与展望参考资料 引言 在编程的世界里&#xff0c;变量和常量是两种…...

初步简单的理解什么是库,什么是静态库,什么是动态库

库是什么 库根据名字我们应该很容易理解&#xff0c;在我们日常生活种&#xff0c;包含库的东西有很多&#xff0c;像仓库&#xff0c;库房那些&#xff0c;库是拿来存放&#xff0c;方便管理东西的&#xff0c;在我们编程当中&#xff0c;库的定义也是如此 那么为什么要有库…...

从ctfwiki开始的pwn之旅 3.ret2syscall

ret2syscall 原理 ret2syscall&#xff0c;即控制程序执行系统调用&#xff0c;获取 shell。 那么ret2text——程序中有system("/bin/sh")代码段&#xff0c;控制流执行 那么ret2shellcode——程序中不存在system("/bin/sh/")的代码段&#xff0c;自己…...

使用 httputils + protostuff 实现高性能 rpc

1、先讲讲 protostuf protostuf 一直是高性能序列化的代表之一。但是用起来&#xff0c;可难受了&#xff0c;你得先申明 protostuf 配置文件&#xff0c;并且要把这个配置文件转成类。所以必然要学习新语法、新工具。 可能真的太难受了&#xff01;于是乎&#xff0c;&#…...

系统思考—战略共识

最近与和一位企业创始人深度交流时&#xff0c;他告诉我&#xff1a;“虽然公司在制定战略时总是非常明确&#xff0c;但在执行过程中&#xff0c;经常发现不同层级对战略的理解偏差&#xff0c;甚至部分团队的执行效果与预期大相径庭。每次开会讨论时&#xff0c;大家都说得头…...

Java版-速通数据结构-树基础知识

现在面试问mysql,红黑树好像都是必备问题了。动不动就让手写红黑树或者简单介绍下红黑树。然而&#xff0c;我们如果直接去看红黑树&#xff0c;可能会一下子蒙了。在看红黑树之前&#xff0c;需要先了解下树的基础知识&#xff0c;从简单到复杂&#xff0c;看看红黑树是在什么…...

详尽的oracle sql函数

1&#xff0c;CHR 输入整数&#xff0c;返回对应字符。 用法&#xff1a;select chr(65),chr(78) from dual; 2&#xff0c;ASCII 输入字符&#xff0c;返回对应ASCII码。 用法&#xff1a;select ascii(A),ascii(B) from dual; 3&#xff0c;CONCAT 输入两个字符串&#xff0c…...

SAP IDOC Error VG205

今天在做IDOC 入栈处理销售订单的时候&#xff0c;一直报错VG205 There is no article description for item 000030 这个问题在通过WE19 前台显示的时候就不会遇见&#xff0c; 只有在接口传输的时候才会遇到 搜索发现&#xff0c;可以通过配置忽略此消息号 配置路径如下…...

DSP 的 CV 算子调用

01 前言 DSP 是 征程 5 上的数字信号处理器&#xff0c;专用于处理视觉、图像等信息。在 OE 包的 ddk/samples/vdsp_rpc_sample 路径下&#xff0c;提供了 DSP 使用示例&#xff0c;包括 nn 和 CV 两部分。 nn 示例涵盖了深度学习模型的相关算子&#xff0c;包括量化、反量化、…...

WMI攻击-基础篇(一)

#WMI攻击-基础篇&#xff08;一&#xff09; 这篇文章是关于WMI攻击系列文章的第一部分&#xff0c;面向新手。如果对Powershell有一定了解会对阅读本文有所帮助&#xff0c;但这并不是必需的&#xff0c;我们直接上干货。 #1、概述 为什么是WMI&#xff1f; WMI 是 Microso…...