多模态视频大模型Aria在Docker部署
多模态视频大模型Aria在Docker部署
契机
⚙ 闲逛HuggingFace的时候发现一个25.3B的多模态大模型,支持图片和视频。刚好我有H20的GPU所以部署来看看效果,因为我的宿主机是cuda-12.1所以为了防止环境污染采用docker部署,通过一系列的披荆斩棘比如Segmentation fault (core dumped)异常,最终成功运行在单卡h20服务器上,python3.10,cuda12.4,ubuntu20.04,程序在推理图片的时候占用50g显存,推理5s视频20fps的时候占用60g左右显存。
项目简介
rhymes-ai/Aria · Hugging Face
https://github.com/rhymes-ai/Aria
线上demo尝试
线上demo响应很快,并且描述得很详细,并且可以描述什么时间发生了啥,介绍里面说的是:Cutting a long video by scene transitions with timestamps.(通过带有时间戳的场景过渡来剪切长视频。),这不是自动剪分镜吗,我有一个好想法先写完这篇再说
环境
docker环境
宿主机cuda是12.4以上的可以忽略,宿主机可以随便升降级cuda的也可以忽略要不然会出现以下异常:ImportError: /usr/local/lib/python3.10/dist-packages/torch/lib/…/…/nvidia/cusparse/lib/libcusparse.so.12: undefined symbol: __nvJitLinkComplete_12_4, version libnvJitLink.so.12
#安装docker前置
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \&& curl -fsSL https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \&& curl -fsSL https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list#安装docker和nvidia-docker
sudo apt-get update
sudo apt-get docker.io
sudo apt-get install -y nvidia-docker2
sudo systemctl start docker
docker --version#配置加速
#data-root为容器目录,我这里指定只是根目录磁盘满了,你磁盘多的可以不指定
vim /etc/docker/daemon.json
{"log-driver": "json-file","log-opts": {"max-file": "3","max-size": "10m"},"registry-mirrors" :["https://hub.rat.dev","https://docker.1panel.live","https://docker.rainbond.cc","https://mirror.ccs.tencentyun.com","http://registry.docker-cn.com","http://docker.mirrors.ustc.edu.cn","http://hub-mirror.c.163.com"],"data-root": "/home/docker"
}#重启
sudo systemctl daemon-reload
sudo systemctl restart docker#运行cuda:12.4.1容器,指定使用哪块gpu,指定挂载路径
#cuda:12.4.1-devel-ubuntu20.04。这个镜像包含了 nvcc 和其他开发工具。
docker run -d \
--name aria \
--gpus '"device=3"' \
-v /home:/home \
nvidia/cuda:12.4.1-devel-ubuntu20.04 \
tail -f /dev/null#进入docker
docker exec -it aria bash#安装常见工具
apt install vim
apt install wget
apt install git
#迁移docker容器目录
#这只是我的磁盘满了,需要搞到其他盘,我自己记录一下,你不用运行sudo rsync -aP /var/lib/docker/ /home/docker
docker info | grep "Docker Root Dir"
Conda环境
#下载conda,有些云厂商不支持tsinghua,所以任意选一个就行
wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-latest-Linux-x86_64.sh
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh#安装conda,配置环境变量,如果选择了自动配置环境可以不修改bashrc
sh Miniconda3-latest-Linux-x86_64.sh#添加conda
vim ~/.bashrc # >>> conda initialize >>>
# !! Contents within this block are managed by 'conda init' !!
__conda_setup="$('/xxx/miniconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)"
if [ $? -eq 0 ]; theneval "$__conda_setup"
elseif [ -f "/xxx/miniconda3/etc/profile.d/conda.sh" ]; then. "/xxx/miniconda3/etc/profile.d/conda.sh"elseexport PATH="/xxx/miniconda3/bin:$PATH"fi
fi
unset __conda_setup
# <<< conda initialize <<<#激活
source ~/.bashrc
代码环境
#建立conda环境,必须使用3.10
#ERROR: Package 'aria' requires a different Python: 3.9.20 not in '>=3.10’
conda create --name aria python=3.10#克隆代码
git clone https://github.com/rhymes-ai/Aria.git#进入Aria工程目录
conda activate aria
pip install -e . -i https://mirrors.aliyun.com/pypi/simple
pip install grouped_gemm -i https://mirrors.aliyun.com/pypi/simple
pip install flash-attn --no-build-isolation -i https://mirrors.aliyun.com/pypi/simple
下载模型
本来测试代码可以自动下载,我喜欢放在指定目录,所以搞了个脚本下载
import argparse
import time
import logging
from huggingface_hub import snapshot_download# Configure logging
logging.basicConfig(level=logging.INFO)def download_model(model_name, local_name, max_retries=15, retry_interval=2):for attempt in range(1, max_retries + 1):try:snapshot_download(repo_id=model_name,ignore_patterns=["*.bin"],local_dir=local_name,force_download=False)logging.info("Download successful")returnexcept Exception as e:logging.error(f"Attempt {attempt} failed: {e}")if attempt < max_retries:time.sleep(retry_interval)else:logging.critical("Download failed, exceeded maximum retry attempts")def main():parser = argparse.ArgumentParser(description="Download a model from Hugging Face Hub")parser.add_argument("--model_name", required=True, help="Name of the model to download")parser.add_argument("--local_name", required=True, help="Local directory to save the model")args = parser.parse_args()download_model(args.model_name, args.local_name)if __name__ == "__main__":main()
#设置国内下载加速
export HF_ENDPOINT=https://hf-mirror.com #命令行直接运行,如果缺少依赖手动装下就行
python download_model.py \
--model_name rhymes-ai/Aria \
--local_name /home/models/huggingface/rhymes-ai/Aria#建议使用nohup
export HF_ENDPOINT=https://hf-mirror.com && nohup xxxxx >> dowload.log 2>&1 &
图片测试
代码
import requests
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoProcessor#这里为下载好模型本地地址
model_id_or_path = "/home/models/huggingface/rhymes-ai/Aria"model = AutoModelForCausalLM.from_pretrained(model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True)#你自己搞一个你图片
image_path = "https://m207605830-1.jpg"image = Image.open(requests.get(image_path, stream=True).raw)messages = [{"role": "user","content": [{"text": None, "type": "image"},{"text": "what is the image?", "type": "text"},],}
]text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=text, images=image, return_tensors="pt")
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype)
inputs = {k: v.to(model.device) for k, v in inputs.items()}with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.bfloat16):output = model.generate(**inputs,max_new_tokens=500,stop_strings=["<|im_end|>"],tokenizer=processor.tokenizer,do_sample=True,temperature=0.9,)output_ids = output[0][inputs["input_ids"].shape[1]:]result = processor.decode(output_ids, skip_special_tokens=True)print(result)
结果
视频测试
代码
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import time
import requests
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoProcessormodel_id_or_path = "/home/models/huggingface/rhymes-ai/Aria"
model = AutoModelForCausalLM.from_pretrained(model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16,trust_remote_code=True)
processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True)#这个一定放在模型加载下面,要不然要报错Segmentation fault (core dumped)
from decord import VideoReader
from tqdm import tqdm
from typing import Listdef load_video(video_file, num_frames=128, cache_dir="/home/lzy/cached_video_frames", verbosity="DEBUG"):# Create cache directory if it doesn't existos.makedirs(cache_dir, exist_ok=True)video_basename = os.path.basename(video_file)cache_subdir = os.path.join(cache_dir, f"{video_basename}_{num_frames}")os.makedirs(cache_subdir, exist_ok=True)cached_frames = []missing_frames = []frame_indices = []for i in range(num_frames):frame_path = os.path.join(cache_subdir, f"frame_{i}.jpg")if os.path.exists(frame_path):cached_frames.append(frame_path)else:missing_frames.append(i)frame_indices.append(i)vr = VideoReader(video_file)duration = len(vr)fps = vr.get_avg_fps()frame_timestamps = [int(duration / num_frames * (i + 0.5)) / fps for i in range(num_frames)]if verbosity == "DEBUG":print("Already cached {}/{} frames for video {}, enjoy speed!".format(len(cached_frames), num_frames, video_file))# If all frames are cached, load them directlyif not missing_frames:return [Image.open(frame_path).convert("RGB") for frame_path in cached_frames], frame_timestampsactual_frame_indices = [int(duration / num_frames * (i + 0.5)) for i in missing_frames]missing_frames_data = vr.get_batch(actual_frame_indices).asnumpy()for idx, frame_index in enumerate(tqdm(missing_frames, desc="Caching rest frames")):img = Image.fromarray(missing_frames_data[idx]).convert("RGB")frame_path = os.path.join(cache_subdir, f"frame_{frame_index}.jpg")img.save(frame_path)cached_frames.append(frame_path)cached_frames.sort(key=lambda x: int(os.path.basename(x).split('_')[1].split('.')[0]))return [Image.open(frame_path).convert("RGB") for frame_path in cached_frames], frame_timestampsdef get_placeholders_for_videos(frames: List, timestamps=[]):contents = []if not timestamps:for i, _ in enumerate(frames):contents.append({"text": None, "type": "image"})contents.append({"text": "\n", "type": "text"})else:for i, (_, ts) in enumerate(zip(frames, timestamps)):contents.extend([{"text": f"[{int(ts) // 60:02d}:{int(ts) % 60:02d}]", "type": "text"},{"text": None, "type": "image"},{"text": "\n", "type": "text"}])return contentsvideo_extensions = ('.mp4', '.avi', '.mov')
for root, _, files in os.walk("/home/"):for file in files:if file.endswith(video_extensions):video_path = os.path.join(root, file)frames, frame_timestamps = load_video(video_path, num_frames=20)### If you want to insert timestamps for Aria Inputscontents = get_placeholders_for_videos(frames, frame_timestamps)### If you DO NOT want to insert frame timestamps for Aria Inputs# contents = get_placeholders_for_videos(frames)start = time.time()messages = [{"role": "user","content": [*contents,{"text": "描述视频","type": "text"},],}]text = processor.apply_chat_template(messages, add_generation_prompt=True)inputs = processor(text=text, images=frames, return_tensors="pt", max_image_size=980)inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype)inputs = {k: v.to(model.device) for k, v in inputs.items()}with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.bfloat16):output = model.generate(**inputs,max_new_tokens=2048,stop_strings=["<|im_end|>"],tokenizer=processor.tokenizer,do_sample=False,)output_ids = output[0][inputs["input_ids"].shape[1]:]result = processor.decode(output_ids, skip_special_tokens=True)print(result)print(time.time() - start)
- 我是分析/home/下面的所有视频,你要分析单个改改就行
- max_image_size可改成490
- num_frames你根据自己视频来选,我的5秒视频,分析20fps,相当于一秒4fps
结果
总结
- aria显存占用还可以,60g左右,好像默认使用的是attn_implementation=“flash_attention_2”
- 对比qwen和cpm来说,可以做到:通过带有时间戳的场景过渡来剪切长视频
- core dumped调整下import就行
写到最后
相关文章:

多模态视频大模型Aria在Docker部署
多模态视频大模型Aria在Docker部署 契机 ⚙ 闲逛HuggingFace的时候发现一个25.3B的多模态大模型,支持图片和视频。刚好我有H20的GPU所以部署来看看效果,因为我的宿主机是cuda-12.1所以为了防止环境污染采用docker部署,通过一系列的披荆斩棘…...

Ant-Design-Vue 全屏下拉日期框无法显示,能显示后小屏又位置错乱
问题1:在全屏后 日期选择器的下拉框无法显示。 解决:在Ant-Design-Vue的文档中,很多含下拉框的组件都有一个属性 getPopupContainer可以用来指定弹出层的挂载节点。 在该组件上加上 getPopupContainer 属性,给挂载到最外层盒子上。 <temp…...

AMR移动机器人赋能制造业仓储自动化升级
在当今制造业的激烈竞争中,智能化、数字化已成为企业转型升级的关键路径。一家制造业巨头,凭借其庞大的生产体系和多个仓库资源,正以前所未有的决心和行动力,在制造业智能化浪潮中勇立潮头,开启了降本增效的新篇章。这…...

【PHP项目实战】活动报名系统
目录 项目介绍 开发语言 后端 前端 项目截图(部分) 首页 列表 详情 个人中心 后台管理 项目演示 项目介绍 本项目是一款基于手机浏览器的活动报名系统。它提供了一个方便快捷的活动报名解决方案,无需下载和安装任何APP,…...

【HarmonyOS】Component组件引入报错 does not meet UI component syntax.
【HarmonyOS】Component组件引入报错 一、问题背景 有时会碰到引入组件时,无法import引入组件,导致引入的组件报错。 或者提示does not meet UI component syntax. (不符合UI组件语法。) 如下图所示,在引入组件时&a…...

vue3项目最新eslint9+prettier+husky+stylelint+vscode配置
一、eslint9和prettier通用配置 安装必装插件 ESlint9.x pnpm add eslintlatest -DESlint配置 vue 规则 , typescript解析器 pnpm add eslint-plugin-vue typescript-eslint -DESlint配置 JavaScript 规则 pnpm add eslint/js -D配置所有全局变量 globals pnpm add globa…...
备赛蓝桥杯--算法题目(3)
1. 2的幂 231. 2 的幂 - 力扣(LeetCode) class Solution { public:bool isPowerOfTwo(int n) {return n>0&&n(n&(-n));} }; 2. 3的幂 326. 3 的幂 - 力扣(LeetCode) class Solution { public:bool isPowerOfT…...
CSS中要注意的样式效果
1. 应用过渡效果 transition: var(--aa); 2.告诉浏览器元素可能会发生变换,从而优化性能。 will-change: transform; 3.使元素不响应鼠标事件。 pointer-events: none; 4.隐藏水平方向上的溢出内容 overflow-x: hidden; 5.定义一个元素的宽度和高度之间的比…...

【NIPS2024】Unique3D:从单张图像高效生成高质量的3D网格
背景(现有方法的不足): 基于Score Distillation Sampling (SDS)的方法:从大型二维扩散模型中提取3D知识,生成多样化的3D结果,但存在每个案例长时间优化问题/不一致问题。 目前通过微…...

使用Kubernetes部署Spring Boot项目
目录 前提条件 新建Spring Boot项目并编写一个接口 新建Maven工程 导入 Spring Boot 相关的依赖 启动项目 编写Controller 测试接口 构建镜像 打jar包 新建Dockerfile文件 Linux目录准备 上传Dockerfile和target目录到Linux 制作镜像 查看镜像 测试镜像 上传镜…...

基于VTX356语音识别合成芯片的智能语音交互闹钟方案
一、方案概述 本方案旨在利用VTX356语音识别合成芯片强大的语音处理能力,结合蓝牙功能、APP或小程序,打造一款功能全面且智能化程度高的闹钟产品。除了基本的时钟显示和闹钟提醒功能外,还拥有正计时、倒计时、日程安排、重要日提醒以及番茄钟…...

git将一个项目的文件放到另一个项目的文件夹下
现有productA与productB项目,现将productA、productB放到productC下的mall-web文件下,目前只能实现保留productA的提交记录,暂不能实现保留两个的提交记录 一.克隆最新的productC的库,这里指mall-web 二.将productA复制到mall-we…...
Cannon.js 从入门到精通
开发领域:前端开发 | AI 应用 | Web3D | 元宇宙 技术栈:JavaScript、React、ThreeJs、WebGL、Go 经验经验:6 年 前端开发经验,专注于图形渲染和 AI 技术 开源项目:智简未来、数字孪生引擎 github 大家好!我…...

深入理解 TCP 标志位(TCP Flags)
深入理解 TCP 标志位(TCP Flags) 1. 简介 在网络安全和网络分析领域,TCP标志位(TCP Flags)是理解网络行为和流量模式的关键概念。特别是在使用工具如Nmap进行端口扫描时,理解这些标志位的意义和用法至关重…...

K8S,StatefulSet
有状态应用 Deployment实际上并不足以覆盖所有的应用编排问题? 分布式应用,它的多个实例之间,往往有依赖关系,比如:主从关系、主备关系。 还有就是数据存储类应用,它的多个实例,往往都会在本地…...
JavaScript动态网络爬取:深入解析与实践指南
引言 随着互联网技术的发展,越来越多的网站采用动态加载技术来提供丰富的用户体验。这些动态内容的加载依赖于JavaScript,给传统的网络爬虫带来了挑战。JavaScript动态网络爬取技术应运而生,它允许开发者模拟用户行为,获取动态加…...

MySql:Centos7安装MySql
目录 安装之前,清除MySql残留文件 下载MySql的官方yum源 安装MySql 服务 MySql配置 常见问题 本次安装基于Centos7,平台为云服务器,由XShell软件演示。 注意,请将用户切换为Root用户。 安装之前,清除MySql残留文…...

Vector软件CANdb++的信号起始位Bug
问题现象 前几天导入DBC文件发现不对劲,怎么生成代码的起始地址都怪怪的,检查下工程里面的配置,还真的是这样,一路查到输入文件——DBC文件,发现是DBC文件就有错误:一些CAN报文之后8字节长度,也…...
elasticsearch-7.14.0集群部署+kibana
1、修改系统参数 用户对软件的内存和硬盘使用权限 vim /etc/security/limits.conf * soft nproc 655350 * soft nofile 655350 * hard nproc 655350 * hard nofile 655350修改最大线程数 vim /etc/sysctl.conf vm.max_map_count262144配置用户最大的线程数 vim /etc/security/…...

如何给GitHub的开源项目贡献PR
🎯导读:本文详细介绍了如何向开源项目“代码随想录”贡献自己的题解。首先,需要Fork原项目的仓库至个人GitHub账户,然后解决克隆仓库时可能遇到的SSH密钥问题。接着,按照标准流程对本地仓库进行代码或文档的修改&#…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...

【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...

如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...

面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...
MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释
以Module Federation 插件详为例,Webpack.config.js它可能的配置和含义如下: 前言 Module Federation 的Webpack.config.js核心配置包括: name filename(定义应用标识) remotes(引用远程模块࿰…...