P3131 [USACO16JAN] Subsequences Summing to Sevens S
题目描述
Farmer John's NN cows are standing in a row, as they have a tendency to do from time to time. Each cow is labeled with a distinct integer ID number so FJ can tell them apart. FJ would like to take a photo of a contiguous group of cows but, due to a traumatic childhood incident involving the numbers 1…61…6, he only wants to take a picture of a group of cows if their IDs add up to a multiple of 7.
Please help FJ determine the size of the largest group he can photograph.
给你n个数,分别是a[1],a[2],...,a[n]。求一个最长的区间[x,y],使得区间中的数(a[x],a[x+1],a[x+2],...,a[y-1],a[y])的和能被7整除。输出区间长度。若没有符合要求的区间,输出0。
输入格式
The first line of input contains NN (1≤N≤50,0001≤N≤50,000). The next NN
lines each contain the NN integer IDs of the cows (all are in the range
0…1,000,0000…1,000,000).
输出格式
Please output the number of cows in the largest consecutive group whose IDs sum
to a multiple of 7. If no such group exists, output 0.
输入输出样例
输入 #1复制
7 3 5 1 6 2 14 10输出 #1复制
5说明/提示
In this example, 5+1+6+2+14 = 28.
import java.util.Scanner;public class Main {// 这里可以根据需要定义一个相对较大的数,模拟C++中的maxn,不过Java中可以根据实际输入动态分配空间public static final int MAXN = 50010;static int[] pre = new int[MAXN];static int n;static int mx = -1;static int[] first = new int[7];static int[] last = new int[7];public static void main(String[] args) {Scanner scanner = new Scanner(System.in);n = scanner.nextInt();for (int i = 1; i <= n; i++) {pre[i] = scanner.nextInt();pre[i] = (pre[i] + pre[i - 1]) % 7;}// 倒着遍历找第一次出现余数的位置for (int i = n; i >= 1; i--) {first[pre[i]] = i;}first[0] = 0;// 正着遍历找最后一次出现余数的位置for (int i = 1; i <= n; i++) {last[pre[i]] = i;}// 遍历余数情况,找最大长度for (int i = 0; i <= 6; i++) {mx = Math.max(last[i] - first[i], mx);}System.out.println(mx);scanner.close();} }
相关文章:
P3131 [USACO16JAN] Subsequences Summing to Sevens S
题目描述 Farmer Johns NN cows are standing in a row, as they have a tendency to do from time to time. Each cow is labeled with a distinct integer ID number so FJ can tell them apart. FJ would like to take a photo of a contiguous group of cows but, due to a…...
大数据技术Kafka详解 ② | Kafka基础与架构介绍
目录 1、kafka的基本介绍 2、kafka的好处 3、分布式发布与订阅系统 4、kafka的主要应用场景 4.1、指标分析 4.2、日志聚合解决方法 4.3、流式处理 5、kafka架构 6、kafka主要组件 6.1、producer(生产者) 6.2、topic(主题) 6.3、partition(分区) 6.4、consumer(消费…...
【CKA】Kubernetes(k8s)认证之CKA考题讲解
CKA考题讲解 0.考试101 0.1 kubectl命令⾃动补全 在 bash 中设置当前 shell 的⾃动补全,要先安装 bash-completion 包。 echo "source <(kubectl completion bash)" >> ~/.bashrc还可以在补全时为 kubectl 使⽤⼀个速记别名: al…...
android WebRtc 无法推流以及拉流有视频无声音问题
最近在开发使用WebRtc进行视频通话和语音通话,我使用的设备是MTK的手机,期间后台的技术人员几乎没法提供任何帮助,只有接口和测试的web端,有遇到不能推流。推流成功网页端有画面有声音,但是安卓端有画面,没…...
【5G】Spectrum 频谱
频谱是移动运营商的关键资产,可用的频谱是定义移动网络容量和覆盖范围的重要因素。本章讨论了5G的不同频谱选项、它们的特性以及5G早期部署阶段的预期频谱。5G是首个旨在利用大约400 MHz到90 GHz之间所有频段的移动无线系统。5G还设计用于在许可、共享和非许可频谱带…...
Flink学习连载文章11--双流Join
双流 Join 和两个流合并是不一样的 两个流合并:两个流变为 1 个流 union connect 双流 join: 两个流 join,其实这两个流还是原来的,只是满足条件的数据会变为一个新的流。 可以结合 sql 语句中的 union 和 join 的区别。 在离线 Hive 中&…...
R语言 | 峰峦图 / 山脊图
目的:为展示不同数据分布的差异。 1. ggplot2 实现 # 准备数据 datmtcars[, c("mpg", "cyl")] colnames(dat)c("value", "type") head(dat) # value type #Mazda RX4 21.0 6 #Mazda RX4 Wag …...
16-03、JVM系列之:内存与垃圾回收篇(三)
JVM系列之:内存与垃圾回收篇(三) ##本篇内容概述: 1、执行引擎 2、StringTable 3、垃圾回收一、执行引擎 ##一、执行引擎概述 如果想让一个java程序运行起来,执行引擎的任务就是将字节码指令解释/编译为对应平台上的本地机器指令才可以。 简…...
解决Windows与Ubuntu云服务器无法通过Socket(udp)通信问题
今天在写Socket通信代码的时候,使用云服务器自己与自己通信没有问题,但是当我们把客户端换为Windows系统的时候却无法发送信息到Linux当中,耗时一上午终于搞定了😒。 问题: 如上图,当我在windows的客户端…...
Mysql 中的锁机制
在 MySQL 中,锁是一种机制,用于管理并发访问以确保数据的一致性和完整性。MySQL 支持多种类型的锁,主要分为以下几类: 全局锁:锁定整个数据库,适用于备份等操作,期间禁止所有其他操作。表级锁&…...
12月第1周AI资讯
阅读时间:3-4min 更新时间:2024.12.2-2024.12.6 目录 OpenAI CEO Sam Altman 预告“12天OpenAI”系列活动 腾讯HunyuanVideo:130亿参数的开源视频生成模型 李飞飞的World Labs发布空间智能技术预览版 中科院联手腾讯打造“AI带货王”AnchorCrafter OpenAI CEO Sam Alt…...
【音频识别】数据集合集!
本文将为您介绍经典、热门的数据集,希望对您在选择适合的数据集时有所帮助。 1 Chenyme-AAVT 更新时间:2024-08-23 访问地址: GitHub 描述: 这是一个全自动(音频)视频翻译项目。利用Whisper识别声音,AI…...
Nginx核心配置详解
一、配置文件说明 nginx官方帮助文档:nginx documentation nginx的配置文件的组成部分: 主配置文件:nginx.conf子配置文件: include conf.d/*.conffastcgi, uwsgi,scgi 等协议相关的配置文件mime.types:…...
智能工厂的设计软件 用“力force”的性质构造智能体原型
本文要点 在“智能工厂的设计软件”中 我将对力的研究分为三个领域:经典力学,相对论力学和量子力学,每个研究领域都涉及到force自身性质所具有两个侧面: 明示高度内聚的不可观测的内部表征-“互相性”(哲学性质/哲学…...
Apache AGE:基于PostgreSQL的图数据库
Apache AGE(A Graph Extension)是一个基于 PostgreSQL 的图数据库。它以扩展插件的形式提供,可以在利用 PostgreSQL 先进的 SQL 查询功能和事务支持的同时,享受图数据库的灵活性和可扩展性。 Apache AGE 最初由 Bitnine Global In…...
RabbitMQ延迟消息的实现
RabbitMQ延迟队列的实现 延迟消息是什么延迟消息的实现死信交换机代码实现 延迟消息插件 延迟消息是什么 延迟消息是将消息发送到MQ中,消费者不会立即收到消息,而是过一段时间之后才会收到消息,进行处理。在一些业务中,可以用到延…...
SAP在中国:助力企业跨越成长的新篇章
在当今这个数字化转型风起云涌的时代,每一个企业都在寻求更高效、更智能的管理方式,以期在激烈的市场竞争中脱颖而出。在这场变革中,SAP作为全球领先的企业管理软件解决方案提供商,正以其卓越的产品与服务,在中国这片充…...
数据结构代码归纳
线性表 线性表的顺序表示 定义与初始化 typedef struct SqList{ElemType data[MaxSize];//ElemType *data 开动态数组 int length; }Sqlist; void InitList(SqList &L){L.length0;//若静态数组//若动态数组 //L.data(ElemType*)malloc(sizeof(ElemType)*MaxSize); } …...
数仓技术hive与oracle对比(一)
准备 包括软硬件环境、数据、测试数据三方面的准备内容。 环境 虚拟机软件virtualbox7,同样的虚拟机配置:内存2G、cpu一核,物理主机同一台macbookpro(13-2020款),所以硬盘IO读写速度一致。 综上&#x…...
筑起厂区安全--叉车安全防护装置全解析
在繁忙的工业生产领域中,叉车作为搬运工,穿梭于仓储与生产线之间。然而,叉车的高效运作背后,也隐藏着诸多安全风险,尤其是在那些空间狭小、物流繁忙的环境中。为了降低这些潜在的危险,叉车安全防护装置便成…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...
