当前位置: 首页 > news >正文

cesium truf 利用缓冲如何将一个点缓冲成一个方形

在Cesium中如果你想要一个更简单的方法将一个点缓冲成一个方形区域,你可以考虑以下步骤:

  1. 确定中心点:首先,你需要有一个中心点的经纬度坐标。
  2. 计算边长:确定你想要缓冲的方形的边长,这里以100公里为例。
  3. 计算四个角点的坐标:根据中心点和边长,计算出四个角点的坐标。
  4. 在Cesium中绘制方形:使用Cesium的API来绘制这个方形。

以下是一个简化的JavaScript代码示例,展示如何在Cesium中实现这一点:

// 假设你有一个点的经纬度坐标
const centerLongitude = -75.343;
const centerLatitude = 39.984;// 缓冲距离(单位:公里)
const distanceKm = 100;// 将距离转换为纬度和经度的偏移量
const radiusEarthKm = 6371; // 地球半径,单位:公里
const latOffset = distanceKm / radiusEarthKm;
const lonOffset = distanceKm / (radiusEarthKm * Math.cos(Cesium.Math.toRadians(centerLatitude)));// 四个角点的坐标
const corners = [Cesium.Cartesian3.fromDegrees(centerLongitude + lonOffset, centerLatitude + latOffset),Cesium.Cartesian3.fromDegrees(centerLongitude - lonOffset, centerLatitude + latOffset),Cesium.Cartesian3.fromDegrees(centerLongitude - lonOffset, centerLatitude - latOffset),Cesium.Cartesian3.fromDegrees(centerLongitude + lonOffset, centerLatitude - latOffset)
];// 在Cesium中绘制方形
const rectangle = viewer.entities.add({name: 'Square Buffer',polygon: {hierarchy: new Cesium.PolygonHierarchy(corners),material: Cesium.Color.RED.withAlpha(0.5)}
});viewer.zoomTo(viewer.entities);

首先计算了四个角点的坐标,然后使用Cesium的entities.add方法来绘制一个方形。这里使用了Cesium.PolygonHierarchy来创建一个多边形,其中包含了四个角点的坐标。这种方法简单直接,不需要额外的库,只需要Cesium的API即可实现。

相关文章:

cesium truf 利用缓冲如何将一个点缓冲成一个方形

: 在Cesium中如果你想要一个更简单的方法将一个点缓冲成一个方形区域,你可以考虑以下步骤: 确定中心点:首先,你需要有一个中心点的经纬度坐标。计算边长:确定你想要缓冲的方形的边长,这里以10…...

HarmonyOS 5.0应用开发——Ability与Page数据传递

【高心星出品】 文章目录 Ability与Page数据传递Page向Ability传递数据Ability向Page传递数据 Ability与Page数据传递 基于当前的应用模型,可以通过以下几种方式来实现UIAbility组件与UI之间的数据同步。 使用EventHub进行数据通信:在基类Context中提供…...

【推荐算法】推荐系统的评估

这篇文章是笔者阅读《深度学习推荐系统》第五章推荐系统的评估的学习笔记,在原文的基础上增加了自己的理解以及内容的补充,在未来的日子里会不断完善这篇文章的相关工作。 文章目录 离线评估划分数据集方法客观评价指标P-R曲线ROC/AUCmAPNDCG A/B 测试分…...

鸿蒙:实现类似Android.9图的图片资源呈现

问题: 在鸿蒙中,是识别不了.9格式的图片资源的,那么如何实现.9图效果呢。? 解决方案: 首先需要将图片资源转为普通的png格式。如果是背景图的,需要换一种方式来处理,目前我所实现的方案是通过St…...

ros2人脸检测

第一步: 首先在工作空间/src下创建数据结构目录service_interfaces ros2 pkg create service_interfaces --build-type ament_cmake 然后再创建一个srv目录 在里面创建FaceDetect.srv(注意,首字母要大写) sensor_msgs/Image …...

Pillow:强大的Python图像处理库

目录 一、引言 二、Pillow 库的安装 三、Pillow 库的基本概念 四、图像的读取和保存 五、图像的基本属性 六、图像的裁剪、缩放和旋转 七、图像的颜色调整 八、图像的滤镜效果 九、图像的合成和叠加 十、图像的绘制 十一、示例程序:制作图片水印 十二、…...

微信小程序uni-app+vue3实现局部上下拉刷新和scroll-view动态高度计算

微信小程序uni-appvue3实现局部上下拉刷新和scroll-view动态高度计算 前言 在uni-appvue3项目开发中,经常需要实现列表的局部上下拉刷新功能。由于网上相关教程较少且比较零散,本文将详细介绍如何使用scroll-view组件实现这一功能,包括动态高度计算、下拉刷新、上拉加载等完整…...

为什么类 UNIX 操作系统通常内置编译器?为什么 Windows 更倾向于直接使用二进制文件?

操作系统是否内置编译器,取决于该系统的设计目标、用户群体以及常见的使用场景。以下是内置编译器和直接使用二进制的设计理念和原因的分析: 为什么类 UNIX 操作系统通常内置编译器? 面向开发者的需求: 类 UNIX 系统(如…...

吉林大学23级数据结构上机实验(第7周)

A 去火车站 寒假到了,小明准备坐火车回老家,现在他从学校出发去火车站,CC市去火车站有两种方式:轻轨和公交车。小明为了省钱,准备主要以乘坐公交为主。CC市还有一项优惠政策,持学生证可以免费乘坐一站轻轨&…...

实验13 使用预训练resnet18实现CIFAR-10分类

1.数据预处理 首先利用函数transforms.Compose定义了一个预处理函数transform,里面定义了两种操作,一个是将图像转换为Tensor,一个是对图像进行标准化。然后利用函数torchvision.datasets.CIFAR10下载数据集,这个函数有四个常见的…...

【开发文档】资源汇总,持续更新中......

文章目录 AI大模型数据集PytorchPythonUltralyticsOpenCVNetronSklearnCMakeListsNVIDIADocker刷题网站持续更新,欢迎补充 本文汇总了一些常用的开发文档资源,涵盖了常用AI大模型、刷题网站、Python、Pytorch、OpenCV、TensorRT、Docker 等技术栈。通过这…...

【k8s实践】 创建第一个Pod(Nginx)

环境 Rocky Linux9.4 x86_64 VM安装了Microk8s (参考:Microk8s安装方法) 说明: 其他k8s(例如: k3s, kubernetes)创建Pod的方法和Microk8s没啥区别,可以参考本文 目标 创建一个Nginx的Pod,映射宿主机30000端口到Pod容器的80端口;客户端能通…...

盘古大模型实战

0 前言 前一段时间,在学习人工智能的同时,也去了解了一下几乎是作为人工智能在气象上应用的一大里程碑式的研究成果-华为盘古气象大模型。正是盘古大模型的出现,促使天气预报的未来发展方向多了个除天气学方法、统计学方法、数值预报方法之外…...

Python subprocess.run 使用注意事项,避免出现list index out of range

在执行iOS UI 自动化专项测试的时候,在运行第一遍的时候遇到了这样的错误: 2024-12-04 20:22:27 ERROR conftest pytest_runtest_makereport 106 Test test_open_stream.py::TestOpenStream::test_xxx_open_stream[iPhoneX-xxx-1-250] failed with err…...

包管理器npm,cnpm,yarn和pnpm

npm (Node Package Manager) 核心技术与工作原理 依赖解析: 广度优先搜索(BFS):npm 使用 BFS 算法来解析依赖树,尽量扁平化 node_modules 目录以减少重复的依赖项。冲突处理:如果两个包需要同一个依赖的不…...

树莓派4B使用opencv读取摄像头配置指南

本文自己记录,给我们lab自己使用,其他朋友们不一定完全适配,请酌情参考。 一. 安装opecnv 我们的树莓派4B默认是armv7l架构,安装的miniconda最新的版本 Miniconda3-latest-Linux-armv7l.sh 仍然是python3.4几乎无法使用&#xff…...

Spring Boot 进阶话题:部署

部署是将应用程序从开发环境移动到可以供用户访问的生产环境的过程。Spring Boot提供了多种部署选项,包括打包为可执行jar文件,使用Docker容器化,以及部署到云平台。 打包Spring Boot应用 Spring Boot应用可以打包为包含所有依赖、类和资源…...

Python 3 和 MongoDB 的集成使用

Python 3 和 MongoDB 的集成使用 MongoDB 是一个流行的 NoSQL 数据库,以其灵活的数据模型和强大的查询功能而闻名。Python 3 作为一种广泛使用的编程语言,与 MongoDB 的集成变得日益重要。本文将介绍如何在 Python 3 环境中集成和使用 MongoDB&#xff…...

perl语言中模式匹配的左右关系

这里简单记录一下,在perl语言中,关于模式匹配的一个细节: 在进行模式匹配的时候,左边写需要查找的字符串,右侧写匹配的关键字. 两边的顺序不一样就会导致匹配结果不一样. 测试代码:…...

【漏洞复现】网动统一通信平台(ActiveUC)接口iactiveEnterMeeting存在信息泄露漏洞

🏘️个人主页: 点燃银河尽头的篝火(●’◡’●) 如果文章有帮到你的话记得点赞👍+收藏💗支持一下哦 @TOC 一、漏洞概述 1.1漏洞简介 漏洞名称:网动统一通信平台(ActiveUC)接口iactiveEnterMeeting存在信息泄露漏洞漏洞编号:无漏洞类型:信息泄露漏洞威胁等级:高危影…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...

三体问题详解

从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

dify打造数据可视化图表

一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...