【密码学】分组密码的工作模式
1.电码本模式(ECB)
优点: 每个数据块独立加密,可并行加密,实现简单。
缺点: 相同明文会产生相同密文,不具备数据完整保护性。
适用于短消息的加密传输 (如一个加密密钥)。
工作流程:用相同的密钥分别对应明文分组单独加密。
2.密文分组链接模式(CBC)
优点:每个密文块的加密依赖前一个密文块,具备数据完整性保护。
缺点: 错误传播、不适合并行处理
适用于常规文件加密、非实时加密等场景
工作流程:将前一个密文块与当前明文块进行异或运算后再加密,初始向量(IV)用于第一个块的加密。
3.密文反馈模式(CFB)
优点:可变长度的加密操作,实时性,可以部分解密数据。
缺点:密文分组的错误传播敏感,不适合并行处理的场景,需要保证初始向量的唯一性和完整性。适用于流加密和对特定部分数据进行随机访问的场景。
适用于流加密和对特定部分数据进行随机访问的场景
工作流程:将前一个密文块作为输入进行加密,生成一个密钥流,再与当前明文块进行异或运算得到密文块。
4.输出反馈模式(OFB)
优点:可变长度的加密操作,实时性,对密文分组的错误不敏感。
缺点:传输错误不可恢复,无法提供数据完整性保护,不支持并行加密。
适用于实时数据流加密和随机访问的场景
工作流程:将前一个加密算法的输出作为输入进行加密,生成一个密钥流,再与当前明文块进行异或运算得到密文块。
5.计数器模式(CTR)
优点:并行处理,随机访问,不受错误传播影响。
缺点:计数器必须唯一,密钥流和明文相关性较弱。
适用于并行加密、随机访问和实时加密的场景。
工作流程:每一个明文分组都与一个经过加密的计数器异或。对每个后续的分组,计数器增1。
6.总结:
| 工作模式 | 描述 | 优点 | 缺点 | 典型应用 |
| 电码本模式(Electronic Codebook,ECB) | 用相同的密钥分别对明文分组单独加密 | 简单直观的加密模式;可以进行并行加密操作;可以随机访问任意块 | 相同的明文块会生成相同的密文块;缺乏混淆和扩散 | 单个数据的安全传输 |
| 密文分组链接模式(Cipher Block Chaining,CBC) | 加密算法的输入是上一个密文分组和下一个明文分组的异或 | 密文之间的依赖性增加了安全性;可处理任意长度的数据;可抵抗明文和密文的修改 | 不适合并行处理;需要处理初始向量;算法之间可能存在差异 | 面向分组的通用传输;认证 |
| 密文反馈模式(Cipher Feedback,CFB) | 一次处理输入的s位,上一个密文分组作为加密算法的输入,产生的伪随机数输出与明文异或后作为下一个单元的密文 | 可变长度的加密操作;实时性;可以部分解密数据 | 错误传播敏感;不适合并行处理;保证初始向量的唯一性和完整性 | 面向数据流的通用传输;认证 |
| 输出反馈模式(Output Feedback,OFB) | 与CFB类似,只是加密算法的输入是上一次加密的输出,并且使用整个分组 | 可变长度的加密操作;实时性;对密文分组的错误不敏感 | 传输错误不可恢复;无法提供数据完整性保护;不支持并行加密 | 噪声信道上的数据传输(如卫星通信) |
| 计数器模式(Counter,CTR) | 每个明文分组都与一个经过加密的计数器异或。对每个后续的分组,计数器增1 | 并行处理;随机访问;不受错误传播影响。 | 计数器必须唯一;密钥流和明文相关性较弱 | 面向分组的通用传输;用于高速需求 |
相关文章:
【密码学】分组密码的工作模式
1.电码本模式(ECB) 优点: 每个数据块独立加密,可并行加密,实现简单。 缺点: 相同明文会产生相同密文,不具备数据完整保护性。 适用于短消息的加密传输 (如一个加密密钥)。 工作流程:用相同的密钥分别对…...
SQL 和 NoSQL 有什么区别?
SQL(Structured Query Language,结构化查询语言)和NoSQL数据库是两种不同类型的数据库管理系统,它们在多个方面存在显著的区别。以下是对SQL和NoSQL主要区别的详细分析: 一、数据存储与模型 SQL数据库 使用关系模型来…...
提升网站流量的关键:AI在SEO关键词优化中的应用
内容概要 在当今数字时代,提升网站流量已成为每个网站管理员的首要任务。而人工智能的技术进步,为搜索引擎优化(SEO)提供了强有力的支持,尤其是在关键词优化方面。关键词是连接用户需求与网站内容的桥梁,其…...
Harnessing Large Language Models for Training-free Video Anomaly Detection
标题:利用大型语言模型实现无训练的视频异常检测 原文链接:https://openaccess.thecvf.com/content/CVPR2024/papers/Zanella_Harnessing_Large_Language_Models_for_Training-free_Video_Anomaly_Detection_CVPR_2024_paper.pdf 源码链接:ht…...
如何通过自学成长为一名后端开发工程师?
大家好,我是袁庭新。最近,有星友向我提出了一个很好的问题:如何通过自学成为一名后端开发工程师? 为了解答这个疑问,我特意制作了一个视频来详细分享我的看法和建议。 戳链接:如何通过自学成长为一名后端开…...
HDR视频技术之六:色调映射
图像显示技术的最终目的就是使得显示的图像效果尽量接近人们在自然界中观察到的对应的场景。 HDR 图像与视频有着更高的亮度、更深的位深、更广的色域,因此它无法在常见的普通显示器上显示。 入门级的显示器与播放设备(例如普通人家使用的电视࿰…...
(洛谷题目)P11060 【MX-X4-T0】「Jason-1」x!
思路: 理解问题:首先,我们要理解题目的要求,即判断一个非负整数n的阶乘n!是否是n1的倍数。 阶乘的定义:根据阶乘的定义,n!是所有小于等于n的正整数的乘积。特别地,0!被定义为1。 特殊情况处理…...
TEXT2SQL工具vanna本地化安装和应用
TEXT2SQL工具vanna本地化安装和应用 Vanna和Text2SQL环境安装和数据准备 conda虚拟环境安装数据准备ollama环境准备 ollama安装和运行ollama下载模型测试下API方式正常使用 chromaDB的默认的embedding模型准备 vanna脚本跑起来 Vanna和Text2SQL TEXT2SQL即文本转SQL…...
Bloom 效果
1、Bloom 效果是什么 Bloom效果(中文也可以叫做高光溢出效果),是一种使画面中亮度较高的区域产生一种光晕或发光效果的图像处理技术,Bloom效果的主要目的是模拟现实世界中强光源在相机镜头或人眼中造成的散射和反射现象ÿ…...
AWS 机器学习,推动 AI 技术的健康发展
目录 一、AI 正在改变生产方式二、从炒作走向务实1、选对场景2、重视数据3、产品思维4、持续优化 三、人才是最稀缺的资源四、负责任的 AI 开发五、未来已来六、启示与思考七、结语 如果说传统软件开发是手工作坊,那么 AI 就像工业革命带来的机器生产。 在最新的一…...
MCPTT 与BTC
MCPTT(Mission Critical Push-to-Talk)和B-TrunC(宽带集群)是两种关键通信标准,它们分别由不同的组织制定和推广。 MCPTT(Mission Critical Push-to-Talk)标准由3GPP(第三代合作伙伴…...
Jackson - JsonGenerator创建JSON、JsonParser解析JSON
以下是关于如何使用Jackson的JsonGenerator类来创建JSON内容以及如何使用JsonParser类来读取JSON内容的教程。 依赖项 首先,在pom.xml文件中添加以下依赖项以引入Jackson库: <dependency><groupId>com.fasterxml.jackson.core</groupI…...
Linux-音频应用编程
ALPHA I.MX6U 开发板支持音频,板上搭载了音频编解码芯片 WM8960,支持播放以及录音功能!本章我们来学习 Linux 下的音频应用编程,音频应用编程相比于前面几个章节所介绍的内容、其难度有所上升,但是笔者仅向大家介绍 Li…...
《QT 示例宝库:探索丰富的编程世界》
《QT 示例宝库:探索丰富的编程世界》 一、QT 基础示例(一)QRadioButton 示例(二)拦截关闭事件示例 二、QT 常用代码示例(一)QObject 相关操作(二)Qt 基本容器遍历&#x…...
腾讯云流式湖仓统一存储实践
点击蓝字⬆ 关注我们 本文共计5107 预计阅读时长16分钟 * 本文将分享腾讯云流式湖仓的架构与实践。主要内容包括: 流计算Oceanus介绍腾讯云流式湖仓架构腾讯云流式湖仓实践腾讯云流式湖仓发展规划 一、流计算Oceanus介绍 随着大数据技术的发展࿰…...
18 设计模式之迭代器模式(书籍遍历案例)
一、什么是迭代器模式 迭代器模式(Iterator Pattern)是一种行为型设计模式,允许客户端通过统一的接口顺序访问一个集合对象中的元素,而无需暴露集合对象的内部实现。这个模式主要用于访问聚合对象(如集合、数组等&…...
超清4K视频素材哪里找?优质下载资源网站分享
我是你们的自媒体UP主小李。现在是高清、4K视频大行其道的时代,想要制作出吸引眼球的优质内容,超清4K视频素材必不可少。今天就为大家分享几个宝藏网站,让你的视频创作更轻松、更出彩! 蛙学网 首先推荐 蛙学网,这是国内…...
刷题日志【1】
目录 1.全排列【力扣】 代码1: 代码2: 2、子集【力扣】 3、全排列Ⅱ【力扣】 4、组合【力扣】 1.全排列【力扣】 代码1: class Solution {bool check[7];vector <int> path;vector<vector<int>> ret;public:vecto…...
【C++算法】32.前缀和_矩阵区域和
文章目录 题目链接:题目描述:解法C 算法代码: 题目链接: 1314. 矩阵区域和 题目描述: 解法 防止有人看不明白题目,先解释一下题目 二维前缀和思想: 使用前缀和矩阵 ret [x1,y1]~[x2,y2] D …...
使用堆栈(Stack)
集合类型(Collection)下篇_xml collection-CSDN博客 以上是堆栈的简单介绍,下方是堆栈的使用 题目:给定一个逆波兰表达式(后缀表达式)的字符串数组tokens,其中每个元素是一个操作数(数字&…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
视觉slam十四讲实践部分记录——ch2、ch3
ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...
宇树科技,改名了!
提到国内具身智能和机器人领域的代表企业,那宇树科技(Unitree)必须名列其榜。 最近,宇树科技的一项新变动消息在业界引发了不少关注和讨论,即: 宇树向其合作伙伴发布了一封公司名称变更函称,因…...
《信号与系统》第 6 章 信号与系统的时域和频域特性
目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...
[特殊字符] 手撸 Redis 互斥锁那些坑
📖 手撸 Redis 互斥锁那些坑 最近搞业务遇到高并发下同一个 key 的互斥操作,想实现分布式环境下的互斥锁。于是私下顺手手撸了个基于 Redis 的简单互斥锁,也顺便跟 Redisson 的 RLock 机制对比了下,记录一波,别踩我踩过…...
解析“道作为序位生成器”的核心原理
解析“道作为序位生成器”的核心原理 以下完整展开道函数的零点调控机制,重点解析"道作为序位生成器"的核心原理与实现框架: 一、道函数的零点调控机制 1. 道作为序位生成器 道在认知坐标系$(x_{\text{物}}, y_{\text{意}}, z_{\text{文}}…...
Python爬虫实战:研究Restkit库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的有价值数据。如何高效地采集这些数据并将其应用于实际业务中,成为了许多企业和开发者关注的焦点。网络爬虫技术作为一种自动化的数据采集工具,可以帮助我们从网页中提取所需的信息。而 RESTful API …...
__VUE_PROD_HYDRATION_MISMATCH_DETAILS__ is not explicitly defined.
这个警告表明您在使用Vue的esm-bundler构建版本时,未明确定义编译时特性标志。以下是详细解释和解决方案: 问题原因: 该标志是Vue 3.4引入的编译时特性标志,用于控制生产环境下SSR水合不匹配错误的详细报告1使用esm-bundler…...




