ORB-SLAM2 ---- 非线性优化在SLAM中的应用(一)
文章目录
- 一、为什么要讲非线性优化
- 二、运动模型和观测模型
- 三、最大似然估计
- 四、SLAM中最小二乘的应用
- 五、总结
一、为什么要讲非线性优化
相信大家在学习一段时间SLAM后,会发现两个问题。第一个是代码能看懂,但是不知道为什么这样做(特别是优化部分)。第二个问题就是数学问题,SLAM最难最迷人的部分在于它很多原理归结到了数学问题上。在看优化的时候,因为g2o库的原因,很多数学公式的内在逻辑没有在代码中展现出来,这几篇文章将从最开始的运动模型和观测模型,一步步的推导到优化中用到的列文伯格-马夸尔方法。将非线性优化放在这里将是因为大家已经有了一定的基础,理解起来会更加的容易。
二、运动模型和观测模型


上述公式是最简单的运动模型和观测模型,x表示相机的位姿,y表示路标的坐标,z表示路标在相机中的像素坐标。我们将其与ORB-SLAM2联系起来,这里的x可以表示每一帧相机的位姿,y表示地图点的世界坐标,z表示地图点在某一帧中的投影像素坐标(特征点的像素坐标)。w和v分别表示运动模型和观测模型中的噪声。通常认为噪声符合高斯分布,如上图所示。这两个模型相机位姿x和像素点坐标z看起来像是待求量,但是在学过一段时间SLAM后就知道,我们关注的是相机的位姿和地图点的时间坐标,也就是x和y。
三、最大似然估计
在上述的两个模型中讲到,我们要求的量是x和y,也就是在u和z的条件下求x和y,这里的u(在追踪线程的恒速跟踪模型中,跟踪速度就相当于u)和z(我们提取的特征点在某一帧中的去畸变坐标)是已知量。故我们要求的是在u和z的情况下x和y的值。这看起来是一个直接计算的问题,但是其中要噪声的干扰使得我们无法求得一个准确得x和y,我们能做的是找出尽可能小得误差下相机得位姿和地图点坐标(x和y)。这个问题就转换成一个概率问题:
我们利用贝叶斯公式将其展开:
可以看出分母与x和y无关,可以将看作比例系数,正比于似然乘以先验。求出x、y条件下z、u的最大概率可以反推,z、u条件下x、y的最大概率,而由于SLAM中没有先验,即求最大似然。
四、SLAM中最小二乘的应用
我们这里以观测模型为例子,讲解单个误差的构成。由上述的观测模型和噪声的高斯特性可以推出下面的公式,我用比较抽象的简笔画简述了原因:
高斯模公式如下图所示,让其取负对数更加容易求解后面的问题
由于对数函数是单调增加的函数,取负对数就是单调减少,故要求最大似然,就要求负对数函数的最小值对应的x,这个公式的第一项与x无关也可以省略,我们将观测模型的高斯表达式代入,即我们要求的是:
我们一开始是以观察模型的一个误差为例,其他误差也是相同的道理,我们将所有的误差累加到一起,求最小值,所得到的x和y才是我们最终需要的x和y。因为我们最终的目的是相机的位姿和地图点的坐标准确,所以不因该求单个误差最小时的x和y,而是所有误差加起来最小时的x和y,即:
公式中的第一项时累积运动误差,第二项为累积观测误差。我们从公式中可以看出,误差项越多,单个误差对相机位姿个地图点坐标的影响就越小,这就是我们在学习优化时怎加约束的原因。
五、总结
本次讲解的内容文字可能不太直观难懂,我自己花了两页纸的空间以流程的形式一步步的进行了推导,能更直观看出每一个步骤直接的因果关系以及推到过程。


相关文章:
ORB-SLAM2 ---- 非线性优化在SLAM中的应用(一)
文章目录 一、为什么要讲非线性优化二、运动模型和观测模型三、最大似然估计四、SLAM中最小二乘的应用五、总结 一、为什么要讲非线性优化 相信大家在学习一段时间SLAM后,会发现两个问题。第一个是代码能看懂,但是不知道为什么这样做(特别是优…...
FastAPI中创建一个多App架构
1. 创建项目结构 首先,设计一个合理的项目结构。这里以三个Apps为例:users、items 和 orders。2. 项目结构 my_fastapi_project/ ├── main.py ├── app/ │ ├── __init__.py │ ├── users/ │ │ ├── __init__.py │ │ ├─…...
计算机网络原理之HTTP与HTTPS
一、前言 为了理解HTTP,我们有必要事先了解一下TCP/IP协议簇。 通常我们使用的网络(包括互联网)是在TCP/IP协议簇的基础上运作的。而HTTP属于它内部的一个子集。 计算机与网络设备要相互通信,双方必须基于相同的方法。比如&#…...
完全按照手册win10里装Ubuntu 虚拟机然后编译ESP32(主要是想针对ESP32C3和S3)开发板的鸿蒙系统(失败)
基本上完全按照手册来的,除了Ubuntu虚拟机使用了22.04 Jammy版本,鸿蒙手册里是20.04 版本,主要是鸿蒙里3年前的手册了,所以就擅自用了高版本。 据此还想到一点,鸿蒙LiteOS,还挺稳定的,3年也没有…...
vsphere vcenter web 界面的介绍
这是主页的页面...
【pyspark学习从入门到精通23】机器学习库_6
目录 分割连续变量 标准化连续变量 分类 分割连续变量 我们经常处理高度非线性的连续特征,而且只用一个系数很难拟合到我们的模型中。 在这种情况下,可能很难只通过一个系数来解释这样一个特征与目标之间的关系。有时,将值划分到离散的桶中…...
FPGA实战篇(呼吸灯实验)
1.呼吸灯简介 呼吸灯采用 PWM 的方式,在固定的频率下,通过调整占空比的方式来控制 LED 灯亮度的变化。 PWM(Pulse Width Modulation ),即脉冲宽度调制,它利用微处理器输出的 PWM 信号,实现对…...
面经自测——自我介绍
前言 这是作者新开的坑,一切题目都是从网上找的原题,为了总结网上有关的面经,以便在真实面试中较为流利的回答面试官的问题 面试之——自我介绍 自我介绍是面试中最常见的问题之一,主要目的是让面试官了解你的背景、技能和职业…...
在 LS-DYNA 中将应力转换为用户定义的坐标系
介绍 通常,使用 LS-DYNA 或 Ansys Mechanical 等仿真工具解决工程问题需要将张量结果与解析解进行比较。一个这样的例子是加压圆柱体,其中圆周应力或环状应力是感兴趣的主要应力度量。例如,如果对具有复杂端部处理的几何结构进行此类仿真&am…...
【Spark】 groupByKey与reduceByKey的区别
groupByKey 操作:将相同键的所有值收集到一个集合中。实现:不会在map端进行局部聚合,而是直接将所有相同键的数据传输到reduce端进行聚合。缺点:由于没有本地聚合,groupByKey会导致大量的数据传输和shuffle,…...
数据库与数据库管理系统概述
title: 数据库与数据库管理系统概述 date: 2024/12/7 updated: 2024/12/7 author: cmdragon excerpt: 在信息化迅速发展的时代,数据已成为企业和组织的重要资产。数据库与数据库管理系统(DBMS)是高效存储、管理和利用数据的核心工具。本文首先定义了数据库的基本概念和特…...
(简单5步实现,免费且比GPT4.0更好用)部署本地AI大语言模型聊天系统:Chatbox AI + 马斯克grok2.0大模型
摘要: 本文将指导您如何部署一个本地AI大语言模型聊天系统,使用Chatbox AI客户端应用和grok-beta大模型,以实现高效、智能的聊天体验。 引言: 由马斯克X-AI发布的Grok 2大模型以其卓越的性能超越了GPT4.0。Grok模型支持超长文本…...
滚珠螺杆导程的定义与重要性
滚珠螺杆导程是指螺杆每旋转一圈时,螺母(或与之配合的移动部件)沿螺杆轴线方向移动的距离。这个参数在机械设计和制造中非常重要,因为它直接影响到传动系统的速度、精度和效率。 导程是滚珠螺杆的重要参数之一,它与切削…...
【特殊子序列 DP】力扣509. 斐波那契数
斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) 0,F(1) 1 F(n) F(n - 1) F(n - 2),其中 n > 1 给定 n &…...
linux 架构详解
Linux 是一种开源的操作系统内核,最初由 Linus Torvalds 于 1991 年创建。它是一个基于 Unix 的操作系统内核,用于构建完整的操作系统。Linux 架构是指 Linux 操作系统的内部结构和组成组件的工作方式。 整体架构 Linux系统通常被看作是一个层次化的结…...
Spring Data Elasticsearch
简介说明 spring-data-elasticsearch是比较好用的一个elasticsearch客户端,本文介绍如何使用它来操作ES。本文使用spring-boot-starter-data-elasticsearch,它内部会引入spring-data-elasticsearch。 Spring Data ElasticSearch有下边这几种方法操作El…...
OpenGL编译用户着色器shader
shader相信很多朋友们都听说过,shader就是运行再GPU上的程序。虽然是这么说,但是我们发现,很多IDE开发工具比如说visual studio 没有办法直接去运行shader代码。这是因为,许多编译器不会自动将shader文件编译成可执行的代码然后发…...
过期策略、内存淘汰机制
1.过期策略:请求时删除 定期删除 请求时删除:使用key之前,检查是否过期,属于一种被动的处理方式。 因此,过期时间到了不表示这个key真的被删除了 定期删除:Redis默认每隔100ms检查,有过期ke…...
Scala的正则表达式
package hfdobject Test35_3 {def main(args: Array[String]): Unit {println("a\tb")//定义一个规则 正则表达式//1. .表示除了换行之外的其他的任意单个字符//2. \d等于[0-9] 匹配一个数字//3. \D除了\d之外的其他的任意字符,表示非数字//4. \w等价于[…...
关于睡懒觉
我们经常听到一个词:睡懒觉。 我认为,睡懒觉这个词,是错误的。 人,是需要睡眠的,睡不够,就不会醒。睡够了,自然会醒,也不想继续睡。不信你试试,睡够了,你…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)
名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
基于鸿蒙(HarmonyOS5)的打车小程序
1. 开发环境准备 安装DevEco Studio (鸿蒙官方IDE)配置HarmonyOS SDK申请开发者账号和必要的API密钥 2. 项目结构设计 ├── entry │ ├── src │ │ ├── main │ │ │ ├── ets │ │ │ │ ├── pages │ │ │ │ │ ├── H…...








