什么是厄尔米特(Hermitian)矩阵?
厄米矩阵(Hermitian Matrix)定义
在数学和物理中,厄米矩阵是满足以下条件的复方阵:
A = A † \mathbf{A}=\mathbf{A}^\dagger A=A†
其中, A † \mathbf{A}^\dagger A†表示矩阵 A \mathbf{A} A的共轭转置,即将矩阵中的每个元素取复共轭后再转置(行变列,列变行)。
更具体地,如果矩阵 A = [ a i j ] \mathbf{A}=[a_{ij}] A=[aij]是 n × n n \times n n×n的复矩阵,则它是厄米矩阵当且仅当满足:
a i j = a j i ‾ , ∀ i , j a_{ij}=\overline{a_{ji}},\quad \forall i,j aij=aji,∀i,j
这里 a j i ‾ \overline{a_{ji}} aji表示元素 a j i a_{ji} aji的复共轭。
厄米矩阵的性质
-
实数对角元素
厄米矩阵的对角线上元素必为实数:
a i i = a i i ‾ ⟹ a i i 是实数 . a_{ii}=\overline{a_{ii}} \implies a_{ii} \text{是实数}. aii=aii⟹aii是实数. -
特征值为实数
厄米矩阵的所有特征值都为实数,这一性质在量子力学中尤为重要。 -
正定性(或半正定性)
如果 A \mathbf{A} A是厄米矩阵,那么它是否正定取决于其特征值是否全部为正。- 如果所有特征值 λ i > 0 \lambda_i>0 λi>0,则 A \mathbf{A} A是正定矩阵。
- 如果所有特征值 λ i ≥ 0 \lambda_i \geq 0 λi≥0,则 A \mathbf{A} A是半正定矩阵。
-
幺正矩阵的特例
如果 A \mathbf{A} A既是厄米矩阵,又满足 A 2 = I \mathbf{A}^2=\mathbf{I} A2=I(单位矩阵),则称其为幺正矩阵。
几何解释
- 在复数域中,厄米矩阵可以看作是实对称矩阵的推广。
- 若视线性变换为几何操作,厄米矩阵的作用是保持内积的复数形式。
厄米矩阵的物理意义
-
量子力学中的哈密顿量矩阵
量子力学中的哈密顿量(Hamiltonian)通常是厄米矩阵,这保证了系统的能量谱(特征值)为实数。 -
密度矩阵
在量子态描述中,密度矩阵也是一个厄米矩阵,其特征值描述了系统在不同态的概率分布。 -
散射矩阵(S矩阵)
在量子散射理论中,厄米矩阵用于保证散射过程的概率守恒。
示例
实数厄米矩阵
A = [ 2 − 1 − 1 3 ] \mathbf{A}=\begin{bmatrix} 2 & -1 \\ -1 & 3 \end{bmatrix} A=[2−1−13]
这是一个实对称矩阵,也是一个厄米矩阵。
复数厄米矩阵
A = [ 2 1 + i 1 − i 4 ] \mathbf{A}=\begin{bmatrix} 2 & 1+i \\ 1-i & 4 \end{bmatrix} A=[21−i1+i4]
验证条件:
- a 12 = 1 + i a_{12}=1+i a12=1+i, a 21 = 1 + i ‾ = 1 − i a_{21}=\overline{1+i}=1-i a21=1+i=1−i,满足 a 12 = a 21 ‾ a_{12}=\overline{a_{21}} a12=a21。
- 对角线元素 a 11 = 2 a_{11}=2 a11=2和 a 22 = 4 a_{22}=4 a22=4是实数。
因此,这也是一个厄米矩阵。
总结
厄米矩阵是共轭转置等于自身的复矩阵,其广泛应用于量子力学、信号处理和机器学习等领域,尤其是其特征值为实数的性质对理论和实际问题具有重要意义。
相关文章:
什么是厄尔米特(Hermitian)矩阵?
厄米矩阵(Hermitian Matrix)定义 在数学和物理中,厄米矩阵是满足以下条件的复方阵: A A † \mathbf{A}\mathbf{A}^\dagger AA† 其中, A † \mathbf{A}^\dagger A†表示矩阵 A \mathbf{A} A的共轭转置,即…...
React - useActionState、useFormStatus与表单处理
参考文档:react18.3.1官方文档 一些概念: React 的 Canary 和 Experimental 频道是 React 团队用于发布和测试新功能的渠道。 useActionState useActionState 是一个可以根据某个表单动作的结果更新 state 的 Hook。 const [state, formAction, isPe…...
v3账号密码登录随机图片验证码
安装插件 pnpm i identify --save图形验证码组件 <template><div class"s-canvas"><!-- 图形验证码的宽和高都来自于父组件的传值,若父组件没有传值,那么就按当前子组件的默认值进行渲染 --><canvas id"s-canvas&…...
不只是请求和响应:使用Fiddler解读Cookie与状态码全指南(下)
欢迎浏览高耳机的博客 希望我们彼此都有更好的收获 感谢三连支持! 不只是请求和响应:使用Fiddler抓包HTTP协议全指南(上)_fiddler 获取响应脚本-CSDN博客https://blog.csdn.net/Chunfeng6yugan/article/details/144005872?spm1001.2014.3001.5501 不只是请求和响…...
java+springboot+mysql游乐园管理系统
项目介绍: 使用javaspringbootmysql开发的游乐园管理系统,系统包含管理员、员工、用户角色,功能如下: 管理员:登录后台;首页数据统计;员工管理;用户管理;游乐项目管理&…...
@RequestBody,getparameter,@RequestParam,@PathVariable之间的区别和联系
RequestBody、RequestParam、PathVariable和getParameter(你提到的可能是Java Servlet API中的方法)是用于处理HTTP请求参数的不同机制。它们各自有不同的用途和适用场景,下面将详细解释它们之间的区别和联系。 1. RequestBody 用途…...
Linx下自动化之路:Redis安装包一键安装脚本实现无网极速部署并注册成服务
目录 简介 安装包下载 安装脚本 服务常用命令 简介 通过一键安装脚本实现 Redis 安装包的无网极速部署,并将其成功注册为系统服务,开机自启。 安装包下载 redis-7.0.8.tar.gzhttp://download.redis.io/releases/redis-7.0.8.tar.gz 安装脚本 修…...
VMware虚拟机搭建和镜像配置
VMware虚拟机搭建和镜像配置 下载安装VMware 开始下载 更改安装路径,需要一个大空间的盘 更改后下一步 下一步后,选择不主动升级更新 一直下一步 直到安装完毕 输入许可密钥,我下载的版本是12,输入完成点击输入ÿ…...
红日靶场vulnstark 4靶机的测试报告[细节](一)
目录 一、测试环境 1、系统环境 2、注意事项 3、使用工具/软件 二、测试目的 三、操作过程 1、信息搜集 2、漏洞利用Getshell ①Struts 2 s2-045漏洞 手工利用s2-45漏洞 Msf综合利用 ②Tomcat框架(CVE-2017-12615) ③phpMyAdmin(CVE-2018-12613) 构造语句写入冰蝎木…...
深入详解人工智能机器学习常见算法——线性回归算法
深入解析线性回归算法 线性回归是机器学习和统计学中最基本、最常用的预测建模技术之一。它通过线性关系描述因变量与一个或多个自变量之间的联系,帮助我们进行数据建模和预测。本篇文章将详细介绍线性回归的基础知识、算法原理、核心概念、实现方法以及其在实际问题…...
Python 开发环境搭建
Python 开发环境搭建 flyfish 版本 Ubuntu 22.04.5 LTS PyTorch 2.5.1 cuda 12.4 python 3.12.7安装 Anaconda3 依赖 sudo apt-get install libgl1-mesa-glx libegl1-mesa libxrandr2 libxrandr2 libxss1 libxcursor1 libxcomposite1 libasound2 libxi6 libxtst6安装命令 …...
OpenCV相机标定与3D重建(9)相机标定函数calibrateCameraRO()的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 cv::calibrateCameraRO 是 OpenCV 中用于相机标定的函数,它允许固定某些点来进行更精确的标定。 函数原型 double cv::calibrateCa…...
flink终止提交给yarn的任务
接上文:一文说清flink从编码到部署上线 1.查看正在执行的flink 访问地址(参考):http://10.86.97.191:8099/cluster/apps 2.终止任务 yarn application -kill appID 本文为: yarn application -kill application_17…...
算法刷题Day14:BM36 判断是不是平衡二叉树
题目链接 描述 输入一棵节点数为 n 二叉树,判断该二叉树是否是平衡二叉树。 在这里,我们只需要考虑其平衡性,不需要考虑其是不是排序二叉树 平衡二叉树(Balanced Binary Tree),具有以下性质:它是…...
【Golang】Go语言编程思想(六):Channel,第一节,介绍Channel
Channel 下面的几个例子将会展示如何定义一个 channel: func chanDemo() {var c chan int // chan int 的含义是, c 是一个 channel, 里面的内容是 int// 上面的声明语句将会创建一个 nil channel, c nil, 它的作用将在 select 当// 中体现 }创建一个非 nil 的 c…...
【Flux.jl】 卷积神经网络
Flux.jl 是包含卷积神经网络的, 但是官方API文件中没有给出一个完整的程序框架, 只是对所需神经元给了局部解释, 此外对 model-zoo 模型动物园中的案例没有及时跟着 Flux.jl 的版本更新, 也无法运行出来结果。 因此本文搭建了一个完整可训练的卷积神经网络。 Conv 卷积算子…...
大模型在辅导场景的深度应用,猿辅导素养课推出启发性“AI作文通”
猿辅导集团旗下的飞象星球面向学校发布“飞象AI作文”,让教育大模型成为老师的AI批改助手、学生的写作助手。芥末堆注意到,猿辅导集团旗下的猿辅导素养课也推出了名为“AI作文通”的AI作文功能,已于7月正式大规模上线,在AI教育领域…...
深入了解架构中常见的4种缓存模式及其实现
4种缓存模式 随着应用程序的复杂性日益增加,缓存管理变得至关重要。缓存不仅能有效减轻数据库负载,还能显著提升数据访问速度。选择合适的缓存模式能够在不同的业务场景下发挥出最佳效果。 本文将详细介绍四种常见的缓存模式:Cache-Aside (…...
Hermes engine on React Native 0.72.5,function无法toString转成字符串
问题描述 Hermes engine on React Native 0.72.5,function无法toString转成字符串 环境 npm6.14.18 node16.17.1项目依赖 "react": "18.2.0", "react-dom": "18.2.0", "react-native": "0.72.5", …...
Spring Boot + MySQL 多线程查询与联表查询性能对比分析
Spring Boot MySQL: 多线程查询与联表查询性能对比分析 背景 在现代 Web 应用开发中,数据库性能是影响系统响应时间和用户体验的关键因素之一。随着业务需求的不断增长,单表查询和联表查询的效率问题日益凸显。特别是在 Spring Boot 项目中࿰…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
