当前位置: 首页 > news >正文

二维立柱图|积水类问题

1

三类问题

  • 求总的积水量
  • 求水坑的个数
  • 求水坑最深的深度
基本思路

我们需要从列的角度来看第 i i i 列是不是有积水,但我们该如何确定第 i i i 列是否是有积水?

方法是事先维护一个前后缀的最大值, L [ i ] L[i] L[i] R [ i ] R[i] R[i] 分别表示 [ 1 , i ] [1,i] [1,i] [ i , n ] [i,n] [i,n] 中障碍物的最高高度,那么对于第 i i i 列,如果满足 L [ i ] > h [ i ] & & h [ i ] < R [ i ] L[i]> h[i] ~\&\&~ h[i]< R[i] L[i]>h[i] && h[i]<R[i],那么就证明它是低洼地,且水深就是 m i n ( L [ i ] , R [ i ] ) − h [ i ] min(L[i],R[i])-h[i] min(L[i],R[i])h[i]

准备工作
int h[N], L[N], R[N], n;
//分别记录第i列的障碍物高度以及前后缀最大值
void work() {cin >> n;for (int i = 1; i <= n; i++) cin >> h[i];for (int i = 1; i <= n; i++) L[i] = max(L[i - 1], h[i]);for (int i = n; i >= 1; i--) R[i] = max(R[i + 1], h[i]);
}
求总的积水量
int get_sum() {int sum = 0;for (int i = 1; i <= n; i++) {if (L[i] > h[i] && h[i] < R[i]) {sum += min(L[i], R[i]) - h[i];}}return sum;
}
求水坑的个数

注意:即使两个相邻的水坑有相同高度的水平面,只要之间有障碍物相隔,就算是两个水坑。

解决办法:引入一个标记状态的数组 s t [ N ] st[N] st[N],表示第 i i i 列是否是水坑的一条,如果 s t [ i ] = = t r u e & & s t [ i − 1 ] = = t r u e st[i]==true~\&\&~st[i-1]==true st[i]==true && st[i1]==true,那么就说明了他们是属于同一水坑,否则第 i i i 列就属于一个新的水坑。

bool st[N];//表示第i列是否是水坑的一条
int get_cnt() {int cnt = 0;for (int i = 1; i <= n; i++) {if (L[i] > h[i] && h[i] < R[i]) {if (!st[i - 1]) cnt++;st[i] = true;}}return cnt;
}
求水坑的最深的深度
int get_mx() {int mx = 0;for (int i = 1; i <= n; i++) {if (L[i] > h[i] && h[i] < R[i]) {mx = max(mx, min(L[i], R[i]) - h[i]);}}return mx;
}
例题
  • 积水量 http://bailian.openjudge.cn/practice/4074/

  • 有多少坑

题目描述

大雨过后,一些高低不平的地方就会形成积水,俗称为“坑”。

这里我们将问题简化为只考虑一段路面的横截面。我们将这一段截面上的土地分割成单位宽度的窄条,测量出每个窄条的高度。

假设有无穷多的水量从天而降,请你计算一下,这段路面上会形成多少个水坑?坑的最大深度是多少毫米?

输入

输入第一行给出一个正整数 N ( ≤ 100000 ) N(\leq 100000) N(100000)。随后一行给出 N N N 个非负整数,为路面横截面总左到右的单位宽度窄条的高度,以毫米为单位,不超过 1000 1000 1000

输出

输出分两行,第一行输出水坑的个数,第二行输出所有水坑中最大的深度,以毫米为单位。

注意:即使两个相邻的水坑有相同高度的水平面,只要之间有窄条相隔,就算是两个水坑。

样例输入

12
1 4 2 10 7 1 2 1 8 3 1 2

样例输出

3
7

代码实现

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 5;
int h[N], L[N], R[N], n;
//分别记录第i列的障碍物高度以及前后缀最大值
bool st[N];//表示第i列是否是水坑的一条
void work() {cin >> n;for (int i = 1; i <= n; i++) cin >> h[i];R[n + 1] = 0;for (int i = 1; i <= n; i++) L[i] = max(L[i - 1], h[i]);for (int i = n; i >= 1; i--) R[i] = max(R[i + 1], h[i]);
}
int get_cnt() {int cnt = 0;for (int i = 1; i <= n; i++) {if (L[i] > h[i] && h[i] < R[i]) {if (!st[i - 1]) cnt++;st[i] = true;}}return cnt;
}
int get_mx() {int mx = 0;for (int i = 1; i <= n; i++) {if (L[i] > h[i] && h[i] < R[i]) {mx = max(mx, min(L[i], R[i]) - h[i]);}}return mx;
}
int main() {work();cout << get_cnt() << "\n" << get_mx();return 0;
}

相关文章:

二维立柱图|积水类问题

三类问题 求总的积水量求水坑的个数求水坑最深的深度 基本思路 我们需要从列的角度来看第 i i i 列是不是有积水&#xff0c;但我们该如何确定第 i i i 列是否是有积水&#xff1f; 方法是事先维护一个前后缀的最大值&#xff0c; L [ i ] L[i] L[i] 和 R [ i ] R[i] R[…...

vue前端实现导出页面为word(两种方法)

将vue页面导出为word文档&#xff0c;不用写模板&#xff0c;直接导出即可。 第一种方法(简单版) 第一步&#xff1a;安装所需依赖 npm install html-docx-js -S npm install file-saver -S第二步&#xff1a;创建容器&#xff0c;页面使用方法&#xff08;简单版&#xff1…...

22. Three.js案例-创建旋转的圆环面

22. Three.js案例-创建旋转的圆环面 实现效果 知识点 WebGLRenderer (WebGL渲染器) THREE.WebGLRenderer 是Three.js中最常用的渲染器&#xff0c;用于将场景渲染到WebGL画布上。 构造器 new THREE.WebGLRenderer(parameters) 参数类型描述parametersObject可选参数对象&…...

Elasticsearch:使用阿里 infererence API 及 semantic text 进行向量搜索

在之前的文章 “Elasticsearch 开放推理 API 新增阿里云 AI 搜索支持”&#xff0c;它详细描述了如何使用 Elastic inference API 来针对阿里的密集向量模型&#xff0c;稀疏向量模型&#xff0c; 重新排名及 completion 进行展示。在那篇文章里&#xff0c;它使用了很多的英文…...

Linux WEB服务器的部署及优化

1.用户常用关于web的信息 1.1.什么是www www是world wide web的缩写&#xff0c;及万维网&#xff0c;也就是全球信息广播的意思。 通常说的上网就是使用www来查询用户所需要的信息。 www可以结合文字、图形、影像以及声音等多媒体&#xff0c;超链接的方式将信息以Internet…...

人工智能大模型LLM开源资源汇总(持续更新)

说明 目前是大范围整理阶段&#xff0c;所以存在大量机翻说明&#xff0c;后续会逐渐补充和完善资料&#xff0c;减少机翻并增加说明。 Github上的汇总资源&#xff08;大部分英文&#xff09; awesome-production-machine-learning 此存储库包含一系列精选的优秀开源库&am…...

目标跟踪算法:SORT、卡尔曼滤波、匈牙利算法

目录 1 目标检测 2 卡尔曼滤波 3《从放弃到精通&#xff01;卡尔曼滤波从理论到实践》视频简单学习笔记 3.1 入门 3.2 进阶 3.2.1 状态空间表达式 3.2.2 高斯分布 3.3 放弃 3.4 精通 4 匈牙利算法 5 《【运筹学】-指派问题&#xff08;匈牙利算法&#xff09;》视…...

Java版-图论-拓扑排序与有向无环图

拓扑排序 拓扑排序说明 对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边<u,v>∈E(G),则u在线性序列中出现在v之前。通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列…...

GTC2024 回顾 | 优阅达携手 HubSpot 亮相上海,赋能企业数字营销与全球业务增长

从初创企业入门到成长型企业拓展&#xff0c;再到 AI 驱动智能化运营&#xff0c;HubSpot 为企业的每步成长提供了全方位支持。 2024 年 11 月下旬&#xff0c;备受瞩目的 GTC2024 全球流量大会&#xff08;上海&#xff09;成功举办。本次大会汇聚了全国内多家跨境出海领域企业…...

eclipse启动的时候,之前一切很正常,但突然报Reason: Failed to determine a suitable driver class的解决

1、之前项目都是启动正常的&#xff0c;然后运行以后发现启动不了了&#xff0c;还会报错&#xff1a; 2、这个Reason: Failed to determine a suitable driver class&#xff0c;说是没有合适的驱动class spring:datasource:url: jdbc:sqlserver://192.168.1.101:1433;databa…...

_tkinter.TclError: can‘t find package tkdnd Unable to load tkdnd library.解决办法

Traceback (most recent call last): File “tkinterdnd2\TkinterDnD.py”, line 55, in _require _tkinter.TclError: can’t find package tkdnd During handling of the above exception, another exception occurred: Traceback (most recent call last): File “1.导入总表…...

VBA高级应用30例应用在Excel中的ListObject对象:向表中添加注释

《VBA高级应用30例》&#xff08;版权10178985&#xff09;&#xff0c;是我推出的第十套教程&#xff0c;教程是专门针对高级学员在学习VBA过程中提高路途上的案例展开&#xff0c;这套教程案例与理论结合&#xff0c;紧贴“实战”&#xff0c;并做“战术总结”&#xff0c;以…...

folly库Conv类型转换源码解析

1,普通类型转换 例子1: bool boolV = true;EXPECT_EQ(to<bool>(boolV), true);int intV = 42;EXPECT_EQ(to<int>(intV), 42);float floatV = 4.2f;EXPECT_EQ(to<float>(floatV), 4.2f);double doubleV = 0.42;EXPECT_EQ(to<double>(doubleV), 0.42)…...

UE4 骨骼网格体合并及规范

实现代码 // Fill out your copyright notice in the Description page of Project Settings.#pragma once#include "CoreMinimal.h" #include "SkeletalMeshMerge.h" #include "Kismet/BlueprintFunctionLibrary.h" #include "AceMeshCom…...

Java版企业电子招标采购系统源业码Spring Cloud + Spring Boot +二次开发+ MybatisPlus + Redis

功能描述 1、门户管理&#xff1a;所有用户可在门户页面查看所有的公告信息及相关的通知信息。主要板块包含&#xff1a;招标公告、非招标公告、系统通知、政策法规。 2、立项管理&#xff1a;企业用户可对需要采购的项目进行立项申请&#xff0c;并提交审批&#xff0c;查看所…...

通过源码⼀步⼀步分析 ArrayList 扩容机制

ArrayList 是 Java 中常用的集合类&#xff0c;它底层实现是基于数组的。为了处理元素的动态增加&#xff0c;ArrayList 会在容量不足时进行扩容。以下是通过源码逐步分析 ArrayList 扩容机制的过程。 1. ArrayList 类的基本结构 ArrayList 继承自 AbstractList&#xff0c;实…...

源码分析之Openlayers中默认Controls控件渲染原理

概述 Openlayers 中默认的三类控件是Zoom、Rotate和Attribution 源码分析 defaults方法 Openlayers 默认控件的集成封装在defaults方法中&#xff0c;该方法会返回一个Collection的实例&#xff0c;Collection是一个基于数组封装了一些方法&#xff0c;主要涉及到数组项的添…...

中间件的分类与实践:从消息到缓存

目录 一. 中间件的基本概念 二. 中间件的主要类型 &#xff08;1&#xff09;消息中间件&#xff08;Message-Oriented Middleware, MOM&#xff09;&#xff1a; &#xff08;2&#xff09;数据库中间件&#xff1a; &#xff08;3&#xff09;Web中间件&#xff1a; &a…...

京东e卡 h5st 4.96

声明: 本文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff0c;抓包内容、敏感网址、数据接口等均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff01; 有相关问题请第一时间头像私信联系我删…...

《CSS 知识点》滚动条仅在 hover 时才显示(宽度不改变)

很简单&#xff01; 滚动条的滑动小方块背景色默认透明&#xff0c;仅在hover时设置背景色&#xff1b; 滚动条的轨道背景色默认透明&#xff0c;仅在hover时设置背景色&#xff1b; /*滚动条的滑动小方块*/ ::-webkit-scrollbar-thumb {background: transparent; } /*hover…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

Chrome 浏览器前端与客户端双向通信实战

Chrome 前端&#xff08;即页面 JS / Web UI&#xff09;与客户端&#xff08;C 后端&#xff09;的交互机制&#xff0c;是 Chromium 架构中非常核心的一环。下面我将按常见场景&#xff0c;从通道、流程、技术栈几个角度做一套完整的分析&#xff0c;特别适合你这种在分析和改…...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存&#xff1a;一级缓存、二级缓存 默认情况下&#xff0c;只有一级缓存开启&#xff08;sqlSession级别的缓存&#xff09;二级缓存需要手动开启配置&#xff0c;需要局域namespace级别的缓存 一级缓存&#xff08;本地缓存&#…...

9-Oracle 23 ai Vector Search 特性 知识准备

很多小伙伴是不是参加了 免费认证课程&#xff08;限时至2025/5/15&#xff09; Oracle AI Vector Search 1Z0-184-25考试&#xff0c;都顺利拿到certified了没。 各行各业的AI 大模型的到来&#xff0c;传统的数据库中的SQL还能不能打&#xff0c;结构化和非结构的话数据如何和…...