YOLOv8改进,YOLOv8引入CARAFE轻量级通用上采样算子,助力模型涨点

摘要
CARAFE模块的设计目的是在不增加计算复杂度的情况下,提升特征图的质量,特别是在视频超分辨率任务中,提升图像质量和细节。CARAFE结合了上下文感知机制和聚合特征的能力,通过动态的上下文注意力机制来提升细节恢复的效果。

理论介绍
- 传统的卷积操作通常依赖于局部区域来提取特征,而CARAFE通过引入上下文信息,在提取特征时考虑到更多的周围区域,尤其是在超分辨率任务中,可以恢复更多的细节和纹理。
- CARAFE模块通过注意力机制聚焦在关键区域,并对特征图进行上下文增强,这有助于提升图像重建时的细节恢复和边缘锐化。
- 与传统的卷积神经网络(CNN)不同,CARAFE利用无参数卷积,避免了过多的参数,降低了计算复杂度,同时提高了性能
对于采样位置,下图(摘自论文)展示了在FPN的自顶向下路径中积累的重组区域

理论详解可以参考链接:论文地址
代码可在这个链接找到:代码地址
下文都是手把手教程,跟着操作即可添加成功
目录
- 摘要
- 理论介绍
- 🎓一、YOLOv8原始版本代码下载
- 🍀🍀1.yolov8模型结构图
- 🍀🍀2.环境配置
- 🎓二、CARAFE代码
- 🎓三、添加方法
- 🍀🍀1.在modules目录下添加第二章的代码
相关文章:
YOLOv8改进,YOLOv8引入CARAFE轻量级通用上采样算子,助力模型涨点
摘要 CARAFE模块的设计目的是在不增加计算复杂度的情况下,提升特征图的质量,特别是在视频超分辨率任务中,提升图像质量和细节。CARAFE结合了上下文感知机制和聚合特征的能力,通过动态的上下文注意力机制来提升细节恢复的效果。 理论介绍 传统的卷积操作通常依赖于局部区域…...
ZooKeeper节点扩容
新节点的准备工作(这里由hadoop05节点,IP地址为192.168.46.131充当) 配置新节点的主机域名映射,并将其通告给集群中的其他节点配置主机间免密登录关闭防火墙并将其加入到开机不启动项同步hadoop01节点的时间将所需要的文件分发给新…...
深度学习的unfold操作
unfold(展开)是深度学习框架中常见的数据操作。与我们熟悉的卷积类似,unfold也是使用一个特定大小的窗口和步长自左至右、自上至下滑动,不同的是,卷积是滑动后与核求乘积(所以取名为卷积)&#…...
C# 抽奖程序winform示例
C# 抽奖程序winform示例 using System; using System.Collections.Generic; using System.Linq;public class LotterySimulator {private Random random new Random();public List<string> GenerateWinners(int numberOfWinners, int totalParticipants){List<strin…...
嵌入式蓝桥杯学习9 usart串口
复制一下之前ADC的工程,打开cubemx cubemx配置 1.在Connectivity中点击USART1 Mode(模式):Asynchronous(异步模式) 2.将PA9设置为USART1_TX,PA10设置为USART1_RX。 3.配置Parameter Settings. Baud R…...
车载ADB:让汽车更智能的桥梁
随着科技的不断进步,汽车行业也在迅速迈向智能化。车载Android系统(通常称为Android Auto)正在变得越来越流行,而Android Debug Bridge (ADB) 作为连接和调试这些系统的桥梁,也变得尤为重要。在本文中,我们…...
HarmonyOS-高级(一)
文章目录 一次开发、多端部署自由流转 🏡作者主页:点击! 🤖HarmonyOS专栏:点击! ⏰️创作时间:2024年12月09日12点19分 一次开发、多端部署 布局能力 自适应布局 拉伸能力均分能力占比能力缩放…...
【优选算法-滑动窗口】长度最小的子数组、无重复字符的最长子串、最大连续1的个数、将x减为0的最小操作数、水果成篮
一、长度最小的子数组 题目链接: 209. 长度最小的子数组 - 力扣(LeetCode) 题目介绍: 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其总和大于等于 target 的长度最小的 子数组 [numsl, numsl1, .…...
Leetcode 每日一题 202.快乐数
目录 题意 算法思路 过题图片 算法实现 代码解析 复杂度分析 题目链接 结论 题意 判断正整数 n 是不是快乐数。 快乐数定义: (1)每次将正整数替换为它每个位置上的数字的平方和。 (2)重复这个过程直到这个数…...
SEC_ASA 第一天作业
拓扑: 实验需求: 注意:在开始作业之前必须先读“前言”,以免踩坑!!!(☞敢点我试试) 按照拓扑图配置VLAN连接。 注意:ASA防火墙的 Gi0/1口需要起子接口&#x…...
Fluss:面向实时分析设计的下一代流存储
摘要:本文整理自阿里云智能 Flink SQL 和数据通道负责人、Apache Flink PMC 伍翀(花名:云邪)老师,在 Flink Forward Asia 2024 主会场的分享。主要分享了一种专为流分析设计的新一代存储解决方案——Fluss,…...
【一本通】质因数分解
【一本通】质因数分解 C语言实现C 语言实现Java语言实现Python语言实现 💐The Begin💐点点关注,收藏不迷路💐 已知正整数n 是两个不同的质数的乘积,试求出较大的那个质数。 输入 输入只有一行,包含一个正…...
vue2+html2canvas+js PDF实现试卷导出和打印功能
1.首先安装 import html2canvas from html2canvas; import { jsPDF } from jspdf; 2.引入打印插件print.js import Print from "/assets/js/print"; Vue.use(Print) // 打印类属性、方法定义 /* eslint-disable */ const Print function (dom, options) {if (…...
【Python网络爬虫 常见问题汇总】
目录 1. 爬取图片出现403解决办法:设置请求头中的Referer字段 2.关于干坏事的问题后续不定期更新 欢迎共同探讨学习进步 1. 爬取图片出现403 问题出自案例9,已解决。 【Python网络爬虫笔记】9- 抓取优美图库高清壁纸 当在爬取图库图片时遇到 403 错误…...
Java SpringBoot 项目怎样在 IDEA 中运行、部署
大家好,我是程序员徐师兄,今天为大家带来的是Java SpringBoot 项目怎样在 IDEA 中运行、部署。Java 项目的安装部署教程,包括软件的下载,软件的安装。该系统采用 Java 语言开发,SpringBoot 框架,MySql 作为…...
GAMES101:现代计算机图形学-笔记-10
今天来聊一些基本的概念:相机,棱镜与光场。 众所周知,成像的方法有两种:合成与捕获。 像我们之前所学的内容如光栅化,如光线追踪,本质上都是合成图像的方法,他们只是在计算机中模拟来成像。 那…...
【前端面试】Http篇
1. HTTPS 概念 加密(Encryption) 防止数据被截获 数据完整性(Data Integrity) 防止数据篡改 身份验证(Authentication) 验证网站的真实性 2. HTTPS 与 HTTP 的区别 HTTP 是明文传输,HTTPS 是…...
ZZCMS2023存在跨站脚本漏洞(CNVD-2024-44822、CVE-2024-44818)
ZZCMS是一款用于搭建招商网站的CMS系统,由PHP语言开发,可快速搭建:医药招商、保健品招商、化妆品招商、农资招商、孕婴童招商、酒类副食类等招商网站。 国家信息安全漏洞共享平台于2024-11-14公布其存在跨站脚本漏洞。 漏洞编号:…...
Android 15 前台服务类型的变更
在 Android 15 中对前台服务类型做出以下更改。 仍在处理中的媒体内容 要在其清单中声明的前台服务类型 android:foregroundServiceType mediaProcessing在清单中声明的权限 FOREGROUND_SERVICE_MEDIA_PROCESSING要传递给 startForeground() 的常量 FOREGROUND_SERVICE_TYPE_ME…...
微信小程序开发简易教程
微信小程序文件结构详解 1. 项目配置文件 project.config.json 项目的配置文件包含项目名称、appid、编译选项等配置示例: {"description": "项目配置文件","packOptions": {"ignore": []},"setting": {&quo…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...
短视频时长预估算法调研
weighted LR o d d s T p 1 − p ( 1 − p ) o d d s T p ( T p o d d s ∗ p ) o d d s p o d d s T o d d s odds \frac{Tp}{1-p} \newline (1-p)odds Tp \newline (Tp odds * p) odds \newline p \frac{odds}{T odds} \newline odds1−pTp(1−p)oddsTp(Tpodds…...
