BA和CS算法中的Levy飞行策略
Levy飞行策略通过模拟自然界中动物的长距离迁徙行为,指导粒子进行更大范围的搜索,有助于算法快速找到全局最优解。它是一种具有独特优势的随机行为策略,模拟随机游走或搜索过程中的步长和方向,其步长的概率分布为重尾分布,意味着在随机行走的过程中有相对较高的概率出现大跨步。
一、BA和CS算法中的Levy飞行策略
1. 布谷鸟搜索算法(Cuckoo Search, CS)
布谷鸟搜索算法是一种基于自然现象的启发式优化算法,它模拟了布谷鸟寻找宿主鸟巢并寄生卵的行为。在布谷鸟搜索算法中,Levy飞行被用来模拟布谷鸟在搜索过程中的随机游走模式。通过Levy飞行,布谷鸟能够高效地探索搜索空间,从而找到更好的鸟巢位置。这种策略使得算法能够跳出局部最优解,提高全局搜索能力。可以先了解我的文章:路径规划之启发式算法之十一:布谷鸟搜索算法(Cuckoo Search,CS)-CSDN博客
2. 蝙蝠算法(Bat Algorithm, BA)
蝙蝠算法是一种基于蝙蝠回声定位行为的启发式优化算法。在蝙蝠算法中,Levy飞行也被用来模拟蝙蝠在搜索过程中的随机移动。蝙蝠通过调整其飞行速度和方向来探索搜索空间,并利用回声定位来感知环境中的障碍物和目标。Levy飞行的引入使得蝙蝠算法能够更好地平衡局部搜索和全局搜索,从而提高算法的搜索效率和精度。可以先了解我的文章:路径规划之启发式算法之十:蝙蝠算法(Bat Algorithm, BA)-CSDN博客
Levy飞行策略在算法中的应用

图1 Levy飞行策略在算法中的应用
二、定义
1. Levy飞行策略
Levy飞行策略的名称来自于莱维飞行(Levy flight),它模拟了在某些情况下生物在搜索食物或资源时的运动方式。这种策略使得个体或粒子在空间中进行随机移动,其步长和方向由莱维分布所决定。
2. Levy分布(Lévy过程)
莱维分布最早由法国数学家Paul Lévy于20世纪20年代提出,是一种具有重尾特性的概率分布,长尾行为使得在尾部产生极端值的概率较高。其概率密度函数满足幂律关系,意味着相对较大的步长事件(即远距离的移动)比正态分布或其他常见分布更加频繁地发生。与传统分布相比,莱维分布无法定义方差,且不存在矩,这使得它在统计特性上与正态分布等传统分布有着本质的区别。
Lévy分布的定义:一个随机过程,如果满足三个条件,即
、增量平稳独立、以及连续时刻处于概率1的状态时处处右连续,那么它就是一个Lévy过程。数学表达如下:

三个条件详解:
(1)第一个条件要求起始点为0,这使得我们可以将其看作是从原点出发的轨迹。
(2)第二个条件则表明Lévy过程的增量具有平稳性和独立性,也就是说,无论我们选择观察的时间段长短如何,增量的统计性质都是相同的,并且不同时间段的增量之间是独立的。这一特性使得Lévy过程成为了描述许多自然现象和金融市场中的波动性的重要工具。
(3)第三个条件强调了Lévy过程在连续时刻处于概率1的状态时处处右连续。简单来说,这意味着Lévy过程在任意时刻t的取值都是连续的。这种连续性的要求与我们熟悉的布朗运动(Brownian Motion)有所不同,后者的轨迹是不连续的。正是这种连续性使得Lévy过程能够更好地描述某些现象,如股票价格的变化、微粒的扩散以及蛋白质的折叠等。

图2 Lévy分布
数学中有许多概率分布,其中莱维分布是一种非常特殊而有趣的分布。它在金融学、物理学、天文学和信号处理等领域中都有着广泛的应用。
三、特性与优势
(1)长步长和长距离移动: Levy飞行策略通常涉及采取长步长和长距离的移动,这意味着在一次迭代中可能会跳跃到相对远离当前位置的新位置。这与传统的随机游走不同,后者通常涉及小步长和较短距离的移动。由于具有较高长程移动的概率(步长概率为幂律衰减),Levy飞行的移动范围比传统随机行走广很多。
(2)随机性: Levy飞行是随机性的,步长和方向都是随机选择的。通常,步长和方向都服从特定的概率分布,例如莱维分布。
(3)长尾分布: Levy分布具有长尾,这意味着在随机游走中可能发生较大的步长。这种长尾分布反映了在某些情况下发生重要事件的可能性相对较低,但当它们发生时,它们可能具有显著的影响。这种分布的特点是,大部分步长相对较短,但偶尔会出现非常长的步长,形成所谓的“跳跃”。
(4)全局搜索能力: Levy飞行策略能够帮助算法跳出局部最优解,更好地探索全局搜索空间。在优化算法中,这种特性使得算法能够避免陷入局部最优,从而有更大的机会找到全局最优解。
四、数学表达
1. 数学描述
(1)步长生成:Levy飞行中的步长是根据Levy分布生成的。Levy分布是一种长尾分布,具有非常大的方差,能够模拟出大跨步的出现。
(2)方向选择:在每一步中,飞行方向是通过随机选择一个角度来确定的。这样,飞行路径就不再是简单的直线,而是一个随机曲线。
(3)联合生成: Levy飞行策略将步长和方向的生成过程进行联合,即每一步中同时生成步长和方向,以确保步长和方向之间的相关性。
2. 数学公式
(1)Levy分布的概率密度函数(PDF):

这个函数用于描述Levy飞行中步长的分布情况。
(2)Levy飞行步长的生成:

其中,是伽玛函数,
是步长分布的形状参数,通常取1.5,
和
是标准正态分布
随机变量。
五、应用与实例
(1)生物学和生态学:Levy飞行策略被用来模拟动物的觅食行为。许多动物在寻找食物时会表现出类似Levy飞行的随机游走模式。例如,某些鸟类和鱼类在觅食时会采用长距离移动的策略,以增加找到食物的几率。研究者可以利用Levy飞行模型,模拟动物行为,预测物种的分布和生态系统的动态变化。
(2)优化算法:Levy飞行机制常被用来提高搜索效率,尤其是在全局优化问题中。由于其跳跃特性,Levy飞行能够有效避免陷入局部最优解,从而更有可能找到全局最优解。例如,在布谷鸟搜索算法、蝙蝠算法等元启发式算法中,都引入了Levy飞行策略来增强算法的全局搜索能力。
(3)GIS领域:Levy飞行可用于优化空间数据的采集与分析。例如,在城市规划和资源管理中,Levy飞行算法可以帮助确定最佳的监测点位置,以最小化资源使用和最大化信息收集。其随机跳跃特性可以有效地覆盖城市中不同的区域,确保数据的多样性和完整性。
(4)机器学习:Levy飞行被用于特征选择和模型优化。通过在高维特征空间中随机搜索,Levy飞行算法可以帮助选择最具代表性的特征,从而提高模型的性能和效率。此外,Levy飞行还可以与其他智能优化算法结合,如深度学习中的超参数优化,进一步提高模型的准确性和泛化能力。
六、参数调整与注意事项
在使用Levy飞行策略时,需要谨慎调整参数以适应特定问题的需求。例如,在优化算法中,步长控制量α和发现概率pa等参数的设置会直接影响算法的搜索效率和精度。因此,在实际应用中,需要根据问题的特点和需求来选择合适的参数值,并进行充分的验证和测试。
此外,由于Levy分布的特殊性质,其尾部非常长,导致在模拟过程中出现极端值的概率较高。这可能会导致模拟结果出现偏差,需要在实际应用中进行修正。因此,在使用Levy飞行策略时,还需要注意对极端值的处理和对模拟结果的验证。
相关文章:
BA和CS算法中的Levy飞行策略
Levy飞行策略通过模拟自然界中动物的长距离迁徙行为,指导粒子进行更大范围的搜索,有助于算法快速找到全局最优解。它是一种具有独特优势的随机行为策略,模拟随机游走或搜索过程中的步长和方向,其步长的概率分布为重尾分布…...
PHP:实现两张无关联表数据的联合分页处理方案
前言 在现代软件开发中,高效地处理数据是至关重要的环节。尤其是在使用 PHP 进行开发时,常常会遇到各种复杂的数据处理需求。其中,实现两张无关联表数据的联合分页处理就是一个具有挑战性的任务。这种需求在很多实际应用场景中都可能出现&am…...
【单元测试】单元测试介绍
1 单元测试基础 1.单元测试:单元测试又称模块测试,属于白盒测试,是最小单位的测试。模块分为程序模块和功能模块。功能模块指实现了一个完整功能的模块(单元),一个完整的程序单元具备输入、加工和输出三个…...
PyQt事件机制及其应用
一、实例前置 一个小闹钟应用 创建主窗口类 首先我们创建了一个名为AlarmClock的类,它继承自QMainWindow。这个类将包含我们的GUI组件和逻辑。 from Alarm_clock import Ui_MainWindowclass AlarmClock(QMainWindow):def __init__(self):super().__init__()# 初始化…...
厦门凯酷全科技有限公司抖音电商服务的卓越典范
在短视频和直播带货迅速崛起的时代,厦门凯酷全科技有限公司(以下简称“凯酷全科技”)以其专业的服务、创新的精神以及对市场的深刻理解,在抖音电商领域中脱颖而出,成为众多品牌商家信赖的选择。本文将深入探讨凯酷全科…...
vue3水波柱状图 ,实现
效果图 //引用页面 <div style"height: 60px;background-color: #fff;border-radius: 5px;width: 40px;"><WavePercentage:percentage"progress"primary-color"#ffcb7c"secondary-color"#ffcb7c"/></div>import Wa…...
如何在两台 PostgreSQL 服务器之间使用逻辑复制槽进行数据复制
如何在两台 PostgreSQL 服务器之间使用逻辑复制槽进行数据复制 如何在两台 PostgreSQL 服务器之间使用逻辑复制槽进行数据复制环境准备1. 配置主服务器(Publisher)1.1 修改 postgresql.conf1.2 修改 pg_hba.conf1.3 重启 PostgreSQL 服务1.4 创建逻辑复制…...
System.Data.OracleClient 需要 Oracle 客户端软件 version 8.1.7 或更高版本
问题1:“/”应用程序中的服务器错误。 System.Data.OracleClient 需要 Oracle 客户端软件 version 8.1.7 或更高版本。 说明: 执行当前 Web 请求期间,出现未经处理的异常。请检查堆栈跟踪信息,以了解有关该错误以及代码中导致错误的出处的详细…...
【机器人】振动分析和控制工具之Bode图
Bode 图完整介绍 Bode 图由两个部分组成: 幅值图 (Magnitude Plot):描述系统对不同频率输入信号的增益大小(幅值响应)。相位图 (Phase Plot):描述系统输出信号相对于输入信号的相位差。 Bode 图的横轴是频率&#x…...
生成:安卓证书uniapp
地址: https://ask.dcloud.net.cn/article/35777 // 使用keytool -genkey命令生成证书: 官网: keytool -genkey -alias testalias -keyalg RSA -keysize 2048 -validity 36500 -keystore test.keystore ----------------------------------…...
酒店/电影推荐系统里面如何应用深度学习如CNN?
【1】酒店推荐系统里面如何应用CNN?具体过程是什么 在酒店推荐系统中应用卷积神经网络(CNN)并不是一个常见的选择,因为 CNN 主要用于处理具有空间结构的数据,如图像、音频和某些类型的序列数据。然而,在某…...
【CSS in Depth 2 精译_069】11.3 利用 OKLCH 颜色值来处理 CSS 中的颜色问题(上)
当前内容所在位置(可进入专栏查看其他译好的章节内容) 第四部分 视觉增强技术 ✔️【第 11 章 颜色与对比】 ✔️ 11.1 通过对比进行交流 11.1.1 模式的建立11.1.2 还原设计稿 11.2 颜色的定义 11.2.1 色域与色彩空间11.2.2 CSS 颜色表示法 11.2.2.1 RGB…...
Redis篇-6--原理篇5--单线程模型
1、概述 Redis 采用单线程模型来处理客户端请求,这意味着在任意时刻只有一个命令被执行。这种设计简化了 Redis 的实现,并确保了高并发环境下的数据一致性。尽管 Redis 是单线程的,但它通过高效的内存管理和网络 I/O 操作,仍然能…...
Java版-图论-最小生成树-Prim算法
实现描述 如图: Prim算法的基本思想是从一个顶点开始,逐步构建最小生成树。具体步骤如下: 随机选取一个顶点作为起始点,并将其加入最小生成树的集合中。从该顶点出发,选择一条边连接到其他未被访问的顶点中的最小权…...
Python 基础学习(一)
一.基础语法 注释 Python中单行注释以 # 开头,如下: #!/usr/bin/python3# 第一个注释 print ("Hello, Python!") # 第二个注释多行注释可以用多个 # 号,还有 ‘’’ 和 “”": #!/usr/bin/python3# 第一个注释…...
vue2使用rtsp视频流接入海康威视摄像头(纯前端)
一.获取海康威视rtsp视频流 海康威视官方的RTSP最新取流格式如下: rtsp://用户名:密码IP:554/Streaming/Channels/101 用户名和密码 IP就是登陆摄像头时候的IP(笔者这里IP是192.168.1.210) 所以笔者的rtsp流地址就是rtsp://用户名:密码192.168.1.210:554/Streaming/Channel…...
利用PHP和GD库实现图片拼接的方法
利用PHP和GD库实现图片拼接的方法主要涉及到加载图片资源、创建目标画布、将图片资源绘制到目标画布上,并最终输出或保存拼接后的图片。以下是实现图片拼接的基本步骤: 加载图片资源: 使用imagecreatefromjpeg()、imagecreatefrompng()或ima…...
自动驾驶领域常用的软件与工具
CarSim:专门针对车辆动力学的仿真软件,能够预测和仿真汽车整车的操纵稳定性、制动性、平顺性、动力性和经济性。CarMaker:德国IPG公司推出的动力学、ADAS和自动驾驶仿真软件,提供精准的车辆本体模型和闭环仿真系统。VTD (Virtual …...
uniapp-内部项目使用文档
uniapp-内部项目使用文档 目录 uniapp-内部项目使用文档阶段1自行实现内容:阶段1问题记录: 阶段2自行实现内容: 阶段3 APP项目介绍及规范阶段4 公共组件方法UseList 列表页面HooksListItem 列表项uni-load-more 列表加载更多组件CardTitle 列…...
ASP .NET Core 中的环境变量
在本文中,我们将通过组织一场小型音乐会(当然是在代码中)来了解 ASP .NET Core 中的环境变量。让我们从创建项目开始: dotnet new web --name Concert 并更新Program.cs: // replace this: app.MapGet("/"…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
