【AIGC系列】frequency_penalty如何通过控制参数提升文本生成的多样性与创造性
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。
- 推荐:kwan 的首页,持续学习,不断总结,共同进步,活到老学到老
- 导航
- 檀越剑指大厂系列:全面总结 java 核心技术,jvm,并发编程 redis,kafka,Spring,微服务等
- 常用开发工具系列:常用的开发工具,IDEA,Mac,Alfred,Git,typora 等
- 数据库系列:详细总结了常用数据库 mysql 技术点,以及工作中遇到的 mysql 问题等
- 新空间代码工作室:提供各种软件服务,承接各种毕业设计,毕业论文等
- 懒人运维系列:总结好用的命令,解放双手不香吗?能用一个命令完成绝不用两个操作
- 数据结构与算法系列:总结数据结构和算法,不同类型针对性训练,提升编程思维,剑指大厂
非常期待和您一起在这个小小的网络世界里共同探索、学习和成长。💝💝💝 ✨✨ 欢迎订阅本专栏 ✨✨
博客目录
- `frequency_penalty`的作用机制
- 存在惩罚(Presence Penalty)的补充作用
- `frequency_penalty`的实际影响
- `frequency_penalty`的应用场景
在人工智能领域,尤其是在自然语言处理(NLP)中,大模型的文本生成能力一直是研究和应用的热点。随着技术的进步,这些模型能够生成越来越流畅和连贯的文本,但同时也面临着生成内容单一和缺乏多样性的问题。为了解决这一挑战,frequency_penalty
参数应运而生,它通过控制文本生成过程中词汇的使用频率,有效地增加了输出内容的多样性和创造性。
frequency_penalty
的作用机制
frequency_penalty
是一个介于-2.0 到 2.0 之间的参数,它直接影响模型如何根据文本中词汇(token)的现有频率来惩罚新词汇(token)。这个参数的核心思想是通过调整词汇的使用频率,来控制生成文本的多样性。
当frequency_penalty
设置为正值时,模型会倾向于减少那些在文本中已经频繁出现的词汇的使用,从而鼓励生成更少见或更创新的词汇。这种机制类似于在文本中引入一种“新鲜感”,使得生成的内容更加丰富和多样。相反,当参数设置为负值时,模型则会偏向于输出在响应中常见词,这可能会导致生成的文本更加倾向于使用训练数据中频繁出现的词汇,从而减少了文本的多样性。
存在惩罚(Presence Penalty)的补充作用
除了frequency_penalty
外,还存在一种名为“存在惩罚”的机制,它是一种一次性的附加效用,作用于至少采样一次的所有 token。这种惩罚与frequency_penalty
相辅相成,共同作用于模型的预测过程,进一步增强了文本生成的多样性。
frequency_penalty
的实际影响
在实际工作中,frequency_penalty
作为缩放因子作用于模型预测的对数概率上,其形式为:(1 – frequency_penalty) * log_probability。这意味着当频率惩罚不为零时,模型的行为会受到影响。当频率惩罚为 1 时,训练过程中看到的任何词汇都不会用到,从而生成完全新颖的或随机的文本;当频率惩罚介于 0 和 1 之间时,模型会在熟悉词和新颖词之间取得平衡。
这种平衡对于生成高质量的文本至关重要。一方面,它能够确保文本的连贯性和可读性,因为模型不会完全摒弃那些在训练数据中频繁出现的、对于构建流畅文本至关重要的词汇。另一方面,它也能够通过引入新颖词汇来增加文本的多样性和创造性。
frequency_penalty
的应用场景
frequency_penalty
参数的应用场景非常广泛。在内容创作、机器翻译、对话系统等领域,它都能够发挥重要作用。例如,在内容创作中,通过调整frequency_penalty
参数,可以生成更加多样化的文章和故事,避免内容的重复和单调。在机器翻译中,它可以帮助模型生成更加自然和地道的目标语言文本,减少直译和生硬的表达。在对话系统中,它可以使对话更加自然和流畅,提高用户体验。
觉得有用的话点个赞
👍🏻
呗。
❤️❤️❤️本人水平有限,如有纰漏,欢迎各位大佬评论批评指正!😄😄😄💘💘💘如果觉得这篇文对你有帮助的话,也请给个点赞、收藏下吧,非常感谢!👍 👍 👍
🔥🔥🔥Stay Hungry Stay Foolish 道阻且长,行则将至,让我们一起加油吧!🌙🌙🌙
相关文章:

【AIGC系列】frequency_penalty如何通过控制参数提升文本生成的多样性与创造性
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...
Python+OpenCV系列:图像的运算
文章目录 PythonOpenCV系列:图像的加权和、覆盖1. 图像加权和(加权融合)2. 图像覆盖(区域叠加)3. 应用场景4. 总结 PythonOpenCV系列:图像的加权和、覆盖 在图像处理中,图像的加权和与覆盖是两…...
【Unity技巧】Unity项目中哪些文件不用管理(.gitignore)
Unity的项目编译后一般都比较大,动辙几个G。这里面一般我们只需要把Assets, Packages, ProjectSettings这三个文件夹进行源代码管理就可以,其他文件就可以通过下面的.gitignore来忽略掉。 .gitignore文件的内容如下: # 将此 .gitignore 文件…...

ansible 自动化运维工具(三)playbook剧本
目录 Playbook的定义 Playbook组成 Playbook命令 Playbook剧本编写格式 基本组件 Handlers处理器 tags标签 Facts组件 Register:注册变量 Debug模块 Playbook循环 With_items循环 With_dict循环(字典循环) With_nested循环&…...

图论【Lecode_HOT100】
文章目录 1.岛屿数量No.2002.腐烂的橘子No.9943.课程表No.2074.实现Trie(前缀树)No.208 1.岛屿数量No.200 class Solution {public int numIslands(char[][] grid) {if (grid null || grid.length 0) {return 0;}int numIslands 0;int rows grid.len…...

day10性能测试(2)——Jmeter
【没有所谓的运气🍬,只有绝对的努力✊】 目录 1、LoadRunner vs Jmeter 1.1 LoadRunner 1.2 Jmeter 1.3 对比小结 2、Jmeter 环境安装 2.1 安装jdk 2.2 安装Jmeter 2.3 小结 3、Jmeter 文件目录结构 4、Jmeter默认配置修改 5、Jmeter元件、组…...

Y3编辑器文档4:触发器
文章目录 一、触发器简介1.1 触发器界面1.2 ECA语句编辑及快捷键1.3 参数设置1.4 变量设置1.5 实体触发器1.6 函数库与触发器复用 二、触发器的多层结构2.1 子触发器(在游戏内对新的事件进行注册)2.2 触发器变量作用域2.3 复合条件2.4 循环2.5 计时器2.6…...

1. 机器学习基本知识(3)——机器学习的主要挑战
1.5 机器学习的主要挑战 1.5.1 训练数据不足 对于复杂问题而言,数据比算法更重要但中小型数据集仍然很普遍,获得额外的训练数据并不总是一件轻而易举或物美价廉的事情,所以暂时不要抛弃算法。 1.5.2 训练数据不具有代表性 采样偏差&#…...

prometheusgrafana实现监控告警
Prometheus负责集群数据的监控和采集,然后传递给grafana进行可视化,集成睿象云可实现监控报警,为了方便操作,可以通过iframe嵌套grafana到指定的页面。 文章目录 1.Grafana集成Prometheus2.iframe内嵌grafana3.监控告警 1.Grafana…...
Ubuntu防火墙管理(五)——ufw源规则解读与修改
firewalld与nftables 在 /etc/firewalld/firewalld.conf 文件中,FirewallBackend 选项用于指定 Firewalld 使用的防火墙后端实现。具体来说: nftables:这是当前的默认选项,表示 Firewalld 将使用 nftables 作为防火墙后端。nftab…...

Docker如何运行一个python脚本Hello World
Docker如何运行一个python脚本Hello World 1、编写Python的Hello World:script.py #!/usr/bin/python #_*_coding:utf-8_*_ print("Hello World") 2、Dockerfile文件 #拉取Docker环境 FROM python #设置工作目录 WORKDIR /app #将dockerfile同级文件copy到…...

人工智能-自动驾驶领域
目录 引言自动驾驶与人工智能的结合为什么自动驾驶领域适合发表文章博雅智信的自动驾驶辅导服务结语 引言 自动驾驶技术的崛起是当代交通行业的一场革命。通过结合先进的人工智能算法、传感器技术与计算机视觉,自动驾驶不仅推动了技术的进步,也使得未来…...
[ubuntu18.04]ubuntu18.04安装json-c操作说明
ubuntu18.04安装json-c 代码下载 rootw1804-virtual-machine:/home/w1804/tr069# git clone https://github.com/json-c/json-c.git Cloning into /opt/git/json-c... remote: Enumerating objects: 6398, done. remote: Counting objects: 100% (1067/1067), done. remote:…...

华为eNSP:VRRP
一、VRRP背景概述 在现代网络环境中,主机通常通过默认网关进行网络通信。当默认网关出现故障时,网络通信会中断,影响业务连续性和稳定性。为了提高网络的可靠性和冗余性,采用虚拟路由冗余协议(VRRP)是一种…...

Linux--top系统资源命令查看--详解
top命令用法 图: top命令用法: top命令经常用来监控linux的系统状况,是常用的性能分析工具,能够实时显示系统中各个进程的资源占用情况。 top的使用方式: top [-d number] | top [-bnp] top参数解释: -…...
es的join是什么数据类型
在 Elasticsearch 中,parent 并不是一个独立的数据类型,而是与 join 数据类型一起使用的一个概念。join 数据类型用于在同一个索引中建立父子文档之间的关系,允许你在一个索引内表示层级结构或关联关系。通过 join 字段,你可以定义不同类型的文档(如父文档和子文档),并指…...

KV Shifting Attention Enhances Language Modeling
基本信息 📝 原文链接: https://arxiv.org/abs/2411.19574👥 作者: Mingyu Xu, Wei Cheng, Bingning Wang, Weipeng Chen🏷️ 关键词: KV shifting attention, induction heads, language modeling📚 分类: 机器学习, 自然语言处…...

软错误防护技术在车规MCU中应用
在大气层内,宇宙射线粒子与大气分子发生核反应生成大气中子。大气中子入射微电子器件或电路将会诱发单粒子效应(SEE),效应类型主要有单粒子翻转(SEU)、单粒子瞬态(SET)、单粒子锁定&…...

遥感图像处理二(ENVI5.6 Classic)
1 实验目的和内容 1.1 实验目的 本次上机旨在继续深入了解ENVI软件的基本使用,并对提供的实验数据进行基本的图像分割和地物分类等操作并分析结果。 1.2 实验内容 1.2.1 图像分割 对教材示例数据“C7图像分割”中的风景图、兰花图和娃娃图分别进行图像分割操作…...

经典文献阅读之--A Fast Dynamic Point Detection...(用于驾驶场景中的动态点云剔除方法)
0. 简介 现有的基于3D点的动态点检测和移除方法存在显著的时间开销,使其难以适应激光雷达-惯性测程系统。《A Fast Dynamic Point Detection Method for LiDAR-Inertial Odometry in Driving Scenarios》提出了一种基于标签一致性的动态点检测和移除方法࿰…...

龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...

基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...

EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...

MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...