深度学习中的yield
以下为例:
def data_iter(batch_size, features, labels):num_examples = len(features)indices = list(range(num_examples))# 这些样本是随机读取的,没有特定的顺序random.shuffle(indices)for i in range(0, num_examples, batch_size):batch_indices = torch.tensor(indices[i: min(i + batch_size, num_examples)])yield features[batch_indices], labels[batch_indices]
在 Python 中,
yield
是一个关键字,使用yield
的函数是一个生成器函数生成器函数的基本概念
- 普通函数在执行时,遇到
return
语句就会终止函数执行,并返回相应的值。而生成器函数在执行过程中,遇到yield
语句时,会暂停函数的执行,保存当前的执行状态(包括局部变量的值等),并返回yield
后面表达式的值(如果有的话)。当下一次通过某种方式(比如在循环中迭代这个生成器)来请求生成器继续执行时,函数会从上次暂停的地方(也就是yield
语句处)继续往下执行,直到再次遇到yield
语句或者函数执行完毕(如果没有更多的yield
语句了)。在
data_iter
函数中的具体作用
- 在
data_iter
函数里,目的是将给定的数据集(features
和labels
)按照指定的batch_size
划分成一个个小批次(batch)数据来方便后续的批量训练等操作。- 当循环执行到
yield features[batch_indices], labels[batch_indices]
这一行时:
- 首先,它会基于当前批次对应的索引(
batch_indices
)从总的特征数据features
和标签数据labels
中取出相应的批次数据。- 然后,将取出的该批次的特征数据和标签数据作为一个元组返回,这个返回值可以被外部代码获取到(比如在循环中迭代这个生成器来依次获取每个批次的数据)。
- 执行完这次
yield
后,函数就暂停在这里了,等到下一次继续迭代这个生成器(比如下一次循环到这里来获取下一个批次的数据),函数会接着从这个yield
语句之后继续执行,重新去处理下一组索引范围,取出下一个批次的数据并返回,如此反复,直到整个数据集的样本都被划分成批次并返回完。总的来说,
yield
让data_iter
函数变成了一个生成器,能方便地按批次逐个生成数据,避免一次性把所有数据都处理好放入内存,节省内存空间并且符合按批次处理数据的常见深度学习训练流程需求。
相关文章:
深度学习中的yield
以下为例: def data_iter(batch_size, features, labels):num_examples len(features)indices list(range(num_examples))# 这些样本是随机读取的,没有特定的顺序random.shuffle(indices)for i in range(0, num_examples, batch_size):batch_indices …...

数据库数据恢复—ORACLE常见故障有哪些?如何恢复数据?
Oracle数据库常见故障表现: 1、ORACLE数据库无法启动或无法正常工作。 2、ORACLE ASM存储破坏。 3、ORACLE数据文件丢失。 4、ORACLE数据文件部分损坏。 5、ORACLE DUMP文件损坏。 Oracle数据库数据恢复方案: 1、检测存放数据库的服务器/存储设备是否存…...

使用JavaScrip和HTML搭建一个简单的博客网站系统
搭建一个简单的博客网站系统,我们需要创建几个基本的页面和功能:登录、注册、文章发布等。这里我们先实现一个基础版本,包括用户登录、注册以及文章发布的功能。由于这是一个简化版的示例,我们将所有逻辑集成在一个HTML文件中&…...

算法-字符串-76.最小覆盖子串
一、题目 二、思路解析 1.思路: 滑动窗口!!! 2.常用方法: 无 3.核心逻辑: 1.特殊情况:s或t是否为空字符串 if(snull||tnull)return ""; 2.声明一个字符数组——用于记录对应字符出现…...

Python爬虫之Selenium的应用
【1】Selenium基础介绍 1.什么是selenium? (1)Selenium是一个用于Web应用程序测试的工具。 (2)Selenium 测试直接运行在浏览器中,就像真正的用户在操作一样。 (3)支持通过各种driv…...

粉丝生产力与开源 AI 智能名片 2+1 链动模式商城小程序的融合创新与价值拓展
摘要:本文聚焦于粉丝生产力在当代文化与商业语境中的独特作用,并深入探讨其与开源 AI 智能名片 21 链动模式商城小程序的有机结合。通过剖析粉丝生产力的多元表现形式、内在驱动机制以及开源 AI 智能名片 21 链动模式商城小程序的功能特性与商业潜力&…...

红黑树(Red-Black Tree)
一、概念 红黑树(Red Black Tree)是一种自平衡的二叉搜索树,通过添加颜色信息来确保在进行插入和删除操作时,树的高度保持在对数级别,从而保证了查找、插入和删除操作的时间复杂度为 O(log n)。这种树可以很好地解决普…...

Cocos 资源加载(以Json为例)
resources 通常我们会把项目中需要动态加载的资源放在 resources 目录下,配合 resources.load 等接口动态加载。你只要传入相对 resources 的路径即可,并且路径的结尾处 不能 包含文件扩展名。 resources.load("Inf", JsonAsset, (error, ass…...

解决 IntelliJ IDEA 启动错误:插件冲突处理
引言 在使用 IntelliJ IDEA 进行开发时,我们可能会遇到各种启动错误。本文将详细介绍一种常见的错误:插件冲突,并提供解决方案。 错误背景 最近,有用户在启动 IntelliJ IDEA 时遇到了一个错误,提示信息为:…...

SQL——DQL分组聚合
分组聚合: 格式: select 聚合函数1(聚合的列),聚合函数2(聚合的列) from 表名 group by 标识列; ###若想方便分辨聚合后数据可在聚合函数前加上标识列(以标识列进行分组) 常见的聚合函数: sum(列名):求和函数 avg(列名)…...

Ripro V5日主题 v8.3 开心授权版 wordpress主题虚拟资源下载站首选主题模板
RiPro主题全新V5版本,是一个优秀且功能强大、易于管理、现代化的WordPress虚拟资源商城主题。支持首页模块化布局和WP原生小工具模块化首页可拖拽设置,让您的网站设计体验更加舒适。同时支持了高级筛选、自带会员生态系统、超全支付接口等众多功能&#…...

分布式搜索引擎之elasticsearch基本使用2
分布式搜索引擎之elasticsearch基本使用2 在分布式搜索引擎之elasticsearch基本使用1中,我们已经导入了大量数据到elasticsearch中,实现了elasticsearch的数据存储功能。但elasticsearch最擅长的还是搜索和数据分析。 所以j接下来,我们研究下…...
java学习-第十五章-IO流(java.io包中)
一、理解 1. 简单而言:流就是内存与存储设备之间传输数据的通道、管道。 2. 分类: (1) 按方向(以JVM虚拟机为参照物)【重点】 输入流:将中的内容读入到中。 输出流:将中的内容写入到中。 (2) 按单位: 字节流…...

企业如何实现数据从源端到消费端的全链路加工逻辑可视化?
要想实现数据加工链路的可视化,血缘图谱无疑是一个有效的工具。血缘图谱能够清晰地展示数据从产生、流转、加工到最终消费的每一个环节,帮助企业直观地理解数据之间的关联和依赖关系,轻松追溯数据来源和去向,并在数据出现问题时快…...

Toxicity of the Commons: Curating Open-Source Pre-Training Data
基本信息 📝 原文链接: https://arxiv.org/abs/2410.22587👥 作者: Catherine Arnett, Eliot Jones, Ivan P. Yamshchikov, Pierre-Carl Langlais🏷️ 关键词: toxicity filtering, language models, data curation📚 分类: 机器…...
Python 单例模式工厂模式和classmethod装饰器
前言: Python作为面向对象的语言,显然支持基本的设计模式。也具备面向对象的语言的基本封装方法:属性、方法、继承、多态等。但是,做为强大的和逐渐发展的语言,python也有很多高级的变种方法,以适应更多的…...

计算机键盘简史 | 键盘按键功能和指法
注:本篇为 “计算机键盘简史 | 键盘按键功能和指法” 相关文章合辑。 英文部分机翻未校。 The Evolution of Keyboards: From Typewriters to Tech Marvels 键盘的演变:从打字机到技术奇迹 Introduction 介绍 The keyboard has journeyed from a humb…...

【数字信号处理】期末综合实验,离散时间信号与系统的时域分析,离散信号 Z 变换,IIR 滤波器的设计与信号滤波,用窗函数法设计 FIR 数字滤波器
关注作者了解更多 我的其他CSDN专栏 过程控制系统 工程测试技术 虚拟仪器技术 可编程控制器 工业现场总线 数字图像处理 智能控制 传感器技术 嵌入式系统 复变函数与积分变换 单片机原理 线性代数 大学物理 热工与工程流体力学 数字信号处理 光电融合集成电路…...

面试技术点之安卓篇
一、基础 二、高级 三、组件 Android中SurfaceView和TextureView有什么区别? 参考 Android中SurfaceView和TextureView有什么区别? 四、三方框架 五、系统源码 六、性能优化...

Windows Terminal ssh到linux
1. windows store安装 Windows Terminal 2. 打开json文件配置 {"$help": "https://aka.ms/terminal-documentation","$schema": "https://aka.ms/terminal-profiles-schema","actions": [{"command": {"ac…...

接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...

苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

MyBatis中关于缓存的理解
MyBatis缓存 MyBatis系统当中默认定义两级缓存:一级缓存、二级缓存 默认情况下,只有一级缓存开启(sqlSession级别的缓存)二级缓存需要手动开启配置,需要局域namespace级别的缓存 一级缓存(本地缓存&#…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...