当前位置: 首页 > news >正文

伏羲0.07(文生图)

为了使0.06代码能够有效运行并输出项目目录及所有文件,我们在代码中添加一些额外的功能。

  1. 项目目录结构
    项目目录结构如下:

text_to_image_project/

├── config.yaml
├── data/
│ ├── train_data.csv
│ └── test_data.txt
├── models/
│ └── text_to_image_model.pth
├── main.py
└── README.md

  1. 示例配置文件
    config.yaml
model:path: models/text_to_image_model.pthtext_encoder_model_name: bert-base-uncaseddata:input_file: data/test_data.txtoutput_dir: data/generated_imagesdataset_path: data/train_data.csvtraining:batch_size: 64learning_rate: 0.0002epochs: 100
  1. 示例训练数据文件
    data/train_data.csv
text,image_path
a beautiful sunset,data/images/sunset.jpg
a cute puppy,data/images/puppy.jpg
a red rose,data/images/rose.jpg
  1. 示例测试数据文件
    data/test_data.txt
a beautiful sunset
a cute puppy
a red rose
  1. 完善后的代码
    main.py
import tkinter as tk
from tkinter import filedialog, messagebox
from PIL import Image, ImageTk
import torch
import torch.optim as optim
import torch.nn as nn
import torchvision.transforms as transforms
import yaml
import os
import pandas as pd
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, AutoModel
import random
import numpy as np# 配置文件加载
def load_config(config_path):with open(config_path, 'r', encoding='utf-8') as file:config = yaml.safe_load(file)return config# 数据加载
def load_text_data(file_path):with open(file_path, 'r', encoding='utf-8') as file:text_data = file.readlines()return [line.strip() for line in text_data]# 数据清洗
def clean_data(data):return data.dropna().drop_duplicates()# 数据增强
def augment_data(image, mode):if mode == 'train':transform = transforms.Compose([transforms.RandomHorizontalFlip(),transforms.RandomRotation(10),transforms.RandomResizedCrop(64, scale=(0.8, 1.0)),transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])else:transform = transforms.Compose([transforms.Resize((64, 64)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])return transform(image)# 文本编码器
class TextEncoder(nn.Module):def __init__(self, model_name):super(TextEncoder, self).__init__()self.tokenizer = AutoTokenizer.from_pretrained(model_name)self.model = AutoModel.from_pretrained(model_name)def forward(self, text):inputs = self.tokenizer(text, return_tensors='pt', padding=True, truncation=True)outputs = self.model(**inputs)return outputs.last_hidden_state.mean(dim=1)# 图像生成器
class ImageGenerator(nn.Module):def __init__(self, in_channels):super(ImageGenerator, self).__init__()self.decoder = nn.Sequential(nn.ConvTranspose2d(in_channels, 512, kernel_size=4, stride=1, padding=0),nn.BatchNorm2d(512),nn.ReLU(True),nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(256),nn.ReLU(True),nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(128),nn.ReLU(True),nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(64),nn.ReLU(True),nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1),nn.Tanh())def forward(self, x):x = x.view(-1, x.size(1), 1, 1)return self.decoder(x)# 判别器
class Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()self.main = nn.Sequential(nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(128),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(256),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(512),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0),nn.Sigmoid())def forward(self, x):return self.main(x)# 模型定义
class TextToImageModel(nn.Module):def __init__(self, text_encoder_model_name):super(TextToImageModel, self).__init__()self.text_encoder = TextEncoder(text_encoder_model_name)self.image_generator = ImageGenerator(768)  # 768 is the hidden size of BERTdef forward(self, text):text_features = self.text_encoder(text)return self.image_generator(text_features)# 模型加载
def load_model(model_path, text_encoder_model_name):model = TextToImageModel(text_encoder_model_name)if os.path.exists(model_path):model.load_state_dict(torch.load(model_path))model.eval()return model# 图像保存
def save_image(image, path):if not os.path.exists(os.path.dirname(path)):os.makedirs(os.path.dirname(path))image.save(path)# 数据集类
class TextToImageDataset(Dataset):def __init__(self, csv_file, transform=None, mode='train'):self.data = pd.read_csv(csv_file)self.data = clean_data(self.data)self.transform = transformself.mode = modedef __len__(self):return len(self.data)def __getitem__(self, idx):text = self.data.iloc[idx]['text']image_path = self.data.iloc[idx]['image_path']image = Image.open(image_path).convert('RGB')if self.transform:image = self.transform(image, self.mode)return text, image# 模型训练
def train_model(config):transform = transforms.Compose([transforms.Resize((64, 64)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])dataset = TextToImageDataset(config['training']['dataset_path'], transform=augment_data, mode='train')dataloader = DataLoader(dataset, batch_size=config['training']['batch_size'], shuffle=True)model = TextToImageModel(config['model']['text_encoder_model_name'])discriminator = Discriminator()optimizer_g = optim.Adam(model.parameters(), lr=config['training']['learning_rate'])optimizer_d = optim.Adam(discriminator.parameters(), lr=config['training']['learning_rate'])criterion_gan = nn.BCELoss()criterion_l1 = nn.L1Loss()for epoch in range(config['training']['epochs']):model.train()discriminator.train()running_loss_g = 0.0running_loss_d = 0.0for i, (text, images) in enumerate(dataloader):real_labels = torch.ones(images.size(0), 1)fake_labels = torch.zeros(images.size(0), 1)# Train Discriminatoroptimizer_d.zero_grad()real_outputs = discriminator(images)d_loss_real = criterion_gan(real_outputs, real_labels)generated_images = model(text)fake_outputs = discriminator(generated_images.detach())d_loss_fake = criterion_gan(fake_outputs, fake_labels)d_loss = (d_loss_real + d_loss_fake) / 2d_loss.backward()optimizer_d.step()# Train Generatoroptimizer_g.zero_grad()generated_images = model(text)g_outputs = discriminator(generated_images)g_loss_gan = criterion_gan(g_outputs, real_labels)g_loss_l1 = criterion_l1(generated_images, images)g_loss = g_loss_gan + 100 * g_loss_l1  # Weighted sum of GAN loss and L1 lossg_loss.backward()optimizer_g.step()running_loss_g += g_loss.item()running_loss_d += d_loss.item()print(f"Epoch {epoch + 1}, Generator Loss: {running_loss_g / len(dataloader)}, Discriminator Loss: {running_loss_d / len(dataloader)}")# 保存训练好的模型torch.save(model.state_dict(), config['model']['path'])# 图像生成
def generate_images(model, text_data, output_dir):for text in text_data:input_tensor = model.text_encoder([text])image = model.image_generator(input_tensor)image = image.squeeze(0).detach().cpu().numpy()image = (image * 127.5 + 127.5).astype('uint8')image = Image.fromarray(image.transpose(1, 2, 0))# 保存图像save_image(image, f"{output_dir}/{text}.png")# 图形用户界面
class TextToImageGUI:def __init__(self, root):self.root = rootself.root.title("文本生成图像")self.config = load_config('config.yaml')self.model = load_model(self.config['model']['path'], self.config['model']['text_encoder_model_name'])self.text_input = tk.Text(root, height=10, width=50)self.text_input.pack(pady=10)self.train_button = tk.Button(root, text="训练模型", command=self.train_model)self.train_button.pack(pady=10)self.generate_button = tk.Button(root, text="生成图像", command=self.generate_image)self.generate_button.pack(pady=10)self.image_label = tk.Label(root)self.image_label.pack(pady=10)def train_model(self):train_model(self.config)self.model = load_model(self.config['model']['path'], self.config['model']['text_encoder_model_name'])messagebox.showinfo("成功", "模型训练完成")def generate_image(self):text = self.text_input.get("1.0", tk.END).strip()if not text:messagebox.showwarning("警告", "请输入文本")returninput_tensor = self.model.text_encoder([text])image = self.model.image_generator(input_tensor)image = image.squeeze(0).detach().cpu().numpy()image = (image * 127.5 + 127.5).astype('uint8')image = Image.fromarray(image.transpose(1, 2, 0))# 显示图像img_tk = ImageTk.PhotoImage(image)self.image_label.config(image=img_tk)self.image_label.image = img_tk# 保存图像save_image(image, f"{self.config['data']['output_dir']}/{text}.png")messagebox.showinfo("成功", "图像已生成并保存")# 输出项目目录及所有文件
def list_files(startpath):for root, dirs, files in os.walk(startpath):level = root.replace(startpath, '').count(os.sep)indent = ' ' * 4 * (level)print('{}{}/'.format(indent, os.path.basename(root)))subindent = ' ' * 4 * (level + 1)for f in files:print('{}{}'.format(subindent, f))if __name__ == "__main__":config = load_config('config.yaml')# 输出项目目录及所有文件project_root = os.path.dirname(os.path.abspath(__file__))print("项目目录及所有文件:")list_files(project_root)# 加载模型model = load_model(config['model']['path'], config['model']['text_encoder_model_name'])# 加载文本数据text_data = load_text_data(config['data']['input_file'])# 生成图像generate_images(model, text_data, config['data']['output_dir'])# 启动图形用户界面root = tk.Tk()app = TextToImageGUI(root)root.mainloop()
  1. 项目目录及所有文件输出
    在 main.py 中添加了一个 list_files 函数,用于输出项目目录及所有文件。这个函数会在程序启动时自动调用,输出当前项目的目录结构和所有文件。

  2. 说明文档
    README.md
    在项目根目录下创建一个 README.md 文件,内容如下:

# 文本生成图像项目## 目录结构
text_to_image_project/
│
├── config.yaml
├── data/
│ ├── train_data.csv
│ └── test_data.txt
├── models/
│ └── text_to_image_model.pth
├── main.py
└── README.mdcode## 配置文件 `config.yaml`
```yaml
model:path: models/text_to_image_model.pthtext_encoder_model_name: bert-base-uncaseddata:input_file: data/test_data.txtoutput_dir: data/generated_imagesdataset_path: data/train_data.csvtraining:batch_size: 64learning_rate: 0.0002epochs: 100
训练数据文件
data/train_data.csv
csv
text,image_path
a beautiful sunset,data/images/sunset.jpg
a cute puppy,data/images/puppy.jpg
a red rose,data/images/rose.jpg
测试数据文件
data/test_data.txt
code
a beautiful sunset
a cute puppy
a red rose
运行项目
确保安装了所需的依赖库:bash
pip install torch torchvision transformers pillow tkinter
运行 main.py:bash
python main.py
功能
训练模型:点击“训练模型”按钮,开始训练模型。
生成图像:在文本框中输入文本,点击“生成图像”按钮,生成相应的图像并显示在界面上,同时保存到指定目录。
项目目录及所有文件
项目启动时会自动输出项目目录及所有文件。

希望这些改进和示例文件能帮助你更好地理解和运行项目。如果有任何问题或需要进一步的帮助,请随时告诉我!

相关文章:

伏羲0.07(文生图)

为了使0.06代码能够有效运行并输出项目目录及所有文件,我们在代码中添加一些额外的功能。 项目目录结构 项目目录结构如下: text_to_image_project/ │ ├── config.yaml ├── data/ │ ├── train_data.csv │ └── test_data.txt ├── mod…...

scala的泛型特质的应用场景

//泛型特质的应用场景 //作比较找出最大值 //定义一个函数,用来求List元素中的最大值参考代码:object Test4 {def getMax[T](list:List[T])(implicit ev:T > Ordered[T]): T {list.reduce((a:T,b:T)> if(a>b) a else b)}def main(args: Array…...

Win10环境vscode+latex+中文快速配置

安装vscodelatex workshop 配置: {"liveServer.settings.donotVerifyTags": true,"liveServer.settings.donotShowInfoMsg": true,"explorer.confirmDelete": false,"files.autoSave": "afterDelay","exp…...

【vue2】el-select,虚拟滚动(vue-virtual-scroller)

需求背景​​​​​​ vue2+element-ui项目中,当el-select中数据量较大时(超出5000个dom节点),会导致页面加载和渲染卡顿、el-select下拉列表延迟展开。 在现在的el-select的基础上使用分页或者虚拟列表的形式去处理大量的下拉菜单,可以保证页面的正常渲染及el-select的…...

【ETCD】[源码阅读]深度解析 EtcdServer 的 processInternalRaftRequestOnce 方法

在分布式系统中,etcd 的一致性与高效性得益于其强大的 Raft 协议模块。而 processInternalRaftRequestOnce 是 etcd 服务器处理内部 Raft 请求的核心方法之一。本文将从源码角度解析这个方法的逻辑流程,帮助读者更好地理解 etcd 的内部实现。 方法源码 …...

【RabbitMQ】RabbitMQ中核心概念交换机(Exchange)、队列(Queue)和路由键(Routing Key)等详细介绍

博主介绍:✌全网粉丝21W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

【AI知识】过拟合、欠拟合和正则化

一句话总结: 过拟合和欠拟合是机器学习中的两个相对的概念,正则化是用于解决过拟合的方法。 1. 欠拟合: 指模型在训练数据上表现不佳,不能充分捕捉数据的潜在规律,导致在训练集和测试集上的误差都很高。欠拟合意味着模…...

计算机毕设-基于springboot的航空散货调度系统的设计与实现(附源码+lw+ppt+开题报告)

博主介绍:✌多个项目实战经验、多个大型网购商城开发经验、在某机构指导学员上千名、专注于本行业领域✌ 技术范围:Java实战项目、Python实战项目、微信小程序/安卓实战项目、爬虫大数据实战项目、Nodejs实战项目、PHP实战项目、.NET实战项目、Golang实战…...

视图、转发与重定向、静态资源处理

目录 视图 默认视图 视图机制原理 自定义视图 请求转发与重定向 静态资源处理 视图 每个视图解析器都实现了 Ordered 接口并开放出一个 order 属性 可以通过 order 属性指定解析器的优先顺序,order 越小优先级越高 默认是最低优先级,Integer.MAX_…...

优选算法——分治(快排)

1. 颜色分类 题目链接:75. 颜色分类 - 力扣(LeetCode) 题目展示: 题目分析:本题其实就要将数组最终分成3块儿,这也是后面快排的优化思路,具体大家来看下图。 这里我们上来先定义了3个指针&…...

【Linux系统】文件系统

Windows 和 Linux 的文件系统: windows:NTFS —> NTFS:磁盘大于目录:目录是磁盘的一部分。ubuntu :EXT4 —> EXT4: 目录大于磁盘:磁盘是目录的一部分。 Windows文件系统的特点 基于分区的文件系统: Windows…...

javaweb的基础

文章的简介: 页面的展示(HTML)页面的修改、绑定、弹窗(js的dom、bom等)页面的请求(Ajax) 1、在HTML中用标签和css样式实现了浏览器页面。 2、用JS实现页面内容(图片,复选框、文本颜色内容)的修改和弹框&…...

家里养几条金鱼比较好?

金鱼,作为备受喜爱的家庭水族宠物,其饲养数量一直是众多养鱼爱好者关注的焦点。究竟养几条金鱼最为适宜,实则需要综合考量多方面因素,方能达到美观、健康与和谐的理想养鱼境界。 从风水文化的视角来看,金鱼数量有着诸…...

写作词汇积累:差池、一体两面、切实可行极简理解

差池 【差池】可以是名词,是指意外的事或错误。 【差池】也可以是形容词,是指参差不齐、差劲或不行。 1. 由于操作不当,导致这次实验出现了【差池】,我们需要重新分析原因并调整方案。(名词,表示意外的事…...

移远EC200A-CN的OPENCPU使用GO开发嵌入式程序TBOX

演示地址: http://134.175.123.194:8811 admin admin 演示视频: https://www.bilibili.com/video/BV196q2YQEDP 主要功能 WatchDog 1. 守护进程 2. OTA远程升级 TBOX 1. 数据采集、数据可视化、数据上报(内置Modbus TCP/RTU/ASCII,GPS协…...

LEED绿色建筑认证最新消息

关于LEED绿色建筑认证的最新消息,可以从以下几个方面进行概述: 一、认证体系更新与发展 LEED认证体系不断更新和完善,以更好地适应全球绿色建筑的发展趋势。例如,LEED v4能源更新已通过投票,并于2024年3月1日全面启用…...

SpringBoot中集成常见邮箱中容易出现的问题

本来也没打算想写得。不过也是遇到一些坑&#xff0c;就记录一下吧&#xff0c;也折腾了小半天 1.maven配置 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-mail</artifactId></dependency>2…...

webstorm开发uniapp(从安装到项目运行)

1、下载uniapp插件 下载连接&#xff1a;Uniapp Tool - IntelliJ IDEs Plugin | Marketplace &#xff08;结合自己的webstorm版本下载&#xff0c;不然解析不了&#xff09; 将下载到的zip文件防在webstorm安装路径下&#xff0c;本文的地址为&#xff1a; 2、安装uniapp插…...

C# 探险之旅:第七节 - 条件判断(三元判断符):? : 的奇妙冒险

嘿&#xff0c;勇敢的探险家们&#xff01;欢迎来到 C# 编程世界的奇妙之旅的第七节。今天&#xff0c;我们要探索的是一个神秘而强大的宝藏——三元判断符 ? :。别怕&#xff0c;它听起来复杂&#xff0c;但实际上比找宝藏还简单&#xff01; 场景设定&#xff1a;宝藏的选择…...

FlinkCDC实战:将 MySQL 数据同步至 ES

&#x1f4cc; 当前需要处理的业务场景: 将订单表和相关联的表(比如: 商品表、子订单表、物流信息表)组织成宽表, 放入到 ES 中, 加速订单数据的查询. 同步数据到 es. 概述 1. 什么是 CDC 2. 什么是 Flink CDC 3. Flink CDC Connectors 和 Flink 的版本映射 实战 1. 宽表查…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...