当前位置: 首页 > news >正文

利用Python实现多元回归预测汽车价格

引言:

AI技术的热门使得大家对机器学习有了更多的关注,作为与AI技术息息相关的一门课程,从头了解基础的机器学习算法就显得十分有必要,如:梯度下降,线性回归等。

正文:

本文将讲解线性回归中多元回回归的案例

机器学习大致可以分为监督学习,非监督学习、半监督学习还有更高级的强化学习。

线性回归是监督学习的一种,是回归问题,当然后续还有提及分类问题。监督学习,即有监督的学习,供给“机器”学习的数据集需要有一定要求,就是对于数据集需要有标签集,让它知道“这道题的答案”是什么,通过足够多的数据集,虽然不能完全准确的得到答案,但是能够在较小的误差范围内拟合大多数的数据。

相关文章:

利用Python实现多元回归预测汽车价格

引言: AI技术的热门使得大家对机器学习有了更多的关注,作为与AI技术息息相关的一门课程,从头了解基础的机器学习算法就显得十分有必要,如:梯度下降,线性回归等。 正文: 本文将讲解线性回归中多元回回归的案例 机器学习大致可以分为监督学习,非监督学习、半监督学习还…...

抓包软件fiddler和wireshark使用手册

fiddler官方文档 Fiddler 抓包教程1 Fiddler 抓包教程2 wireshark抓包学习 2添加链接描述 ip 过滤 ip.src_host ip.dst_host ip.addr mac 过滤 eth.src eth.dst eth.addr 端口过滤 tcp.port tcp.srcport tcp.dstport 协议类型过滤 arp dhcp 规则组合 and or...

初识三大 Observer

文章目录 ResizeObserver、MutationObserver和IntersectionObserver用MutationObserver实现图片懒加载MutationObserver 兼容性问题IntersectionObserver 应用MutationObserver和IntersectionObserver的区别IntersectionObserver 实例示例一:图片懒加载示例二&#…...

Eclipse MAT(Memory Analyzer Tool) 使用手册

参考:JAVA内存泄露使用MAT(Memory Analyzer Tool)快速定位代码 Eclipse MAT 1.15.0提示JDK版本最低需要使用17版本的,如果不想安装可以下载ZIP包,或者使用较低版本的MAT。 为了避免下载的17版本JDK和本地环境干扰,可以直接在MAT配…...

TongWe7.0-东方通TongWeb控制台无法访问 排查

**问题描述:**无法访问TongWeb的控制台 逐项排查: 1、控制台访问地址是否正确:http://IP:9060/console #IP是服务器的实际IP地址 2、确认TongWeb进程是否存在,执行命令:ps -ef|grep tongweb 3、确认TongWeb服务启动…...

Ariba Procurement: Administration_Master data

采购主数据集成Procurement Master Data Integration 注意:并非所有元素都是必需的,数据元素的名称可能根据ERP的不同,有所不同。 Types of Master Data Accounting 在SAP Ariba中的各种会计元素字段中,填充有效值选择列表。建…...

爬虫学习案例4

爬取猪八戒网站数据:2024-12-12 使用xpath解析元素,安装依赖库 pip install lxml使用selenium步骤我的上篇博客有提到,这里就不重复了 selenium使用博客导航 # 安装pip install lxml,使用xpath from lxml import etree import time from s…...

Angular模块化应用构建详解

文章目录 前言一、理解Angular模块(NgModule)二、创建功能模块三、懒加载模块以提高性能四、共享模块五、库模块六、最佳实践与注意事项七、案例研究:重构电子商务平台结语 前言 Angular是一款由Google支持的、用于构建动态Web应用程序的前端…...

51c大模型~合集89

我自己的原文哦~ https://blog.51cto.com/whaosoft/12815167 #OpenAI很会营销 而号称超强AI营销的灵感岛实测成效如何? OpenAI 是懂营销的,连续 12 天发布,每天一个新花样,如今刚过一半,热度依旧不减。 毫无疑问&…...

【蓝桥杯备战】Day 1

1.基础题目 LCR 018.验证回文串 给定一个字符串 s ,验证 s 是否是 回文串 ,只考虑字母和数字字符,可以忽略字母的大小写。 本题中,将空字符串定义为有效的 回文串 。 示例 1: 输入: s "A man, a plan, a canal: Panama…...

FedAdam算法:供给方信用,数据质量;更新一致性

FedAdam算法:供给方信用,数据质量;更新一致性 FedAdam算法概述 FedAdam是一种联邦学习(Federated Learning)算法。联邦学习是一种机器学习技术,它允许在多个设备或数据中心(称为客户端)上训练模型,而无需将数据集中到一个中央服务器,从而保护数据隐私。FedAdam主要用于…...

内存卡格式化后的数据恢复全攻略

一、内存卡格式化简述 内存卡,作为现代电子设备中不可或缺的存储媒介,广泛应用于手机、相机、行车记录仪等各类设备中。然而,在使用过程中,我们可能会遇到内存卡需要格式化的情况。格式化是一种将内存卡上的所有数据和文件系统清…...

介绍交叉熵损失(Cross-Entropy Loss)以及交叉熵在对比学习中的应用:中英双语

中文版 本文解释 交叉熵损失(Cross-Entropy Loss),并结合对比学习的应用说明它如何工作,以及如何让正样本对更近、负样本对更远。 什么是交叉熵损失? 交叉熵损失是机器学习中常用的一种损失函数,主要用于…...

RabbitMQ的几个概念

注:这篇文章会随时添加新的内容,就是将RabbtiMQ中的概念添加到这里。助力大家的学习 自动ACK和手动ACK的区别 自动ACK和手动ACK是消息队列中两种不同的消息确认机制,它们在消息处理的可靠性和灵活性方面存在显著差异。 自动ACK&#xff08…...

Ollama部署大模型并安装WebUi

Ollama用于在本地运行和部署大型语言模型(LLMs)的工具,可以非常方便的部署本地大模型 安装 Linux curl -fsSL https://ollama.com/install.sh | sh我是ubuntu系统安装,其他系统可以看项目的开源地址有写 GitHub - ollama/ollama: Get up and running with Llama 3, Mist…...

Debedium如何忽略Oracle的purge命令

报错 截至目前3.0版本,Debezium的Oracle Connector并不支持purge table这个指令。 所以,在使用Debezium解析Oracle变更的时候,如果在源端执行了类似 purge table "$BIN… 的语句,就会导致Debezium罢工,日志里显…...

PlantUML 语言

PlantUML 是一种开源工具,用于通过简单的文本描述生成 UML 图。它支持多种 UML 图类型,如类图、序列图、用例图、活动图、组件图、状态图等。PlantUML 语言非常简洁,采用类似编程语言的语法,允许用户使用文本定义模型,…...

linux的 .so和.ko文件分别是什么?主要区别是什么?

前言: .so和.ko文件的主要区别在于它们的应用层次和功能不同。‌ 应用层次 .so文件‌:这是用户层的动态链接库(Shared Object),主要用于用户态的程序中。 它用于动态链接,多个程序可以共享同一个库文件&…...

XX服务器上的npm不知道咋突然坏了

收到同事的V,说是:182上的npm不知道咋突然坏了,查到这里了,不敢动了。 咱一定要抓重点:突然坏了。这里的突然肯定不是瞬间(大概率是上次可用,这次不可用,中间间隔了多长时间&#x…...

数据结构(优先级队列 :Priority Queue)

前言: 在计算机科学中,队列是一种非常常见的数据结构,它遵循先进先出(FIFO)的原则,也就是说,先进入队列的元素会先被处理。然而,在许多实际应用中,我们不仅仅需要按顺序…...

7.4.分块查找

一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...

django filter 统计数量 按属性去重

在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...