当前位置: 首页 > news >正文

大模型的文件有哪些?

在大模型仓库(如Hugging Face)中,例如:https://modelscope.cn/models/ZhipuAI/glm-4-9b-chat/files,通常会发现以下几类文件:

  • 模型权重文件:存储训练好的模型参数,是模型推理和微调的基础
    • .pt.ckpt.safetensors
  • 配置文件:确保模型架构的一致性,使得权重文件能够正确加载
    • config.jsongeneration_config.json
  • 词汇表文件:保证输入输出的一致性
    • tokenizer.jsontokenizer_config.json

GLM-4模型文件列表

1、模型权重文件

  • 模型权重文件是存储训练好的模型参数,是模型推理和微调的基础 ,常见的有.pt.ckpt.safetensors

  • 不同的框架(如TensorFlow、PyTorch)使用不同的模型文件格式
    例如:

    • safetensors:适配多种框架,支持transformers库的模型加载
    • PyTorch:选择下载.pt.bin格式的模型文件。
    • TensorFlow:选择下载.ckpt.h5格式的模型文件。

1.1 safetensors是什么?

  • .safetensors是由Hugging Face提出的一种新型的模型权重文件格式,有以下特点:

    • 安全性.safetensors采用了加密和校验机制,防止模型文件被篡改或注入恶意代码
    • 性能:优化了数据加载和解析速度
    • 跨框架支持:有多种深度学习框架的兼容性,便于在不同环境中使用
  • .safetensors中,大模型可被分为多个部分,格式类似modelname-0001.safetensorsmodelname-0002.safetensors

  • model.safetensors.index.json是索引文件,记录了模型的各个部分的位置和大小信息

2、配置文件

  • config.jsongeneration_config.json

2.1 config.json

  • config.json包含模型的配置信息(如模型架构、参数设置等),可能包含隐藏层的数量、每层的神经元数、注意力头的数量等
  • config.json的基本结构如下:
{"architectures": ["LlamaForCausalLM"],"hidden_act": "silu","hidden_size": 8192,"num_hidden_layers": 80,"max_position_embeddings": 8192,"model_type": "llama","num_attention_heads": 64,"vocab_size": 128256,......
}
  • 例如architectures字段指定了模型的架构,hidden_act字段指定了隐藏层的激活函数,hidden_size字段指定了隐藏层的神经元数
  • num_attention_heads字段指定了注意力头的数量,max_position_embeddings字段指定了模型能处理的最大输入长度等

2.2 generation_config.json

  • generation_config.json是用于生成文本的配置文件,包含了生成文本时的参数设置,如max_lengthtemperaturetop_k
  • generation_config.json的基本结构如下:
{"bos_token_id": 128000,"eos_token_id": 128001,"do_sample": true,"temperature": 0.6,"max_length": 4096,"top_p": 0.9,"transformers_version": "4.40.0.dev0"
}
  • 例如bos_token_id字段指定了开始标记的ID,eos_token_id字段指定了结束标记的ID,do_sample字段指定了是否使用采样,temperature字段用于控制生成文本的随机性,max_length字段指定了生成文本的最大长度,top_p字段指定了采样的概率等
  • config.jsongeneration_config.json 都可能包含 "bos_token_id"(Beginning of Sequence Token ID)和 "eos_token_id"(End of Sequence Token ID)。在config.json中,这两个字段用于模型的加载和训练,而在generation_config.json中,这两个字段用于生成文本时的参数设置
  • config.json 提供模型的基本信息,而 generation_config.json 则细化为生成任务的具体需求

3、词汇表文件

词汇表文件包含了模型使用的词汇表或标记器信息,是自然语言处理模型理解和生成文本的基础。

  • tokenizer.jsontokenizer_config.json

3.1 tokenizer.json

  • tokenizer.json包含了模型使用的词汇表信息,如词汇表的大小、特殊标记的ID等
  • tokenizer.json的基本结构如下:
{"version": "1.0","truncation": {"max_length": 128,"strategy": "longest_first"},"padding": {"side": "right","pad_id": 0,"pad_token": "[PAD]"},"added_tokens": [{"id": 128010,"content": "[CUSTOM]"}],"normalizer": {"type": "NFD","lowercase": true,"strip_accents": true},"pre_tokenizer": {"type": "ByteLevel","add_prefix_space": true},"post_processor": {"type": "AddSpecialTokens","special_tokens": {"cls_token": "[CLS]","sep_token": "[SEP]"}},"decoder": {"type": "ByteLevel"},"model": {"type": "BPE",...}
}
  • 其中truncation是定义截断策略,用于限制输入序列的最大长度,padding用于统一输入序列的长度,added_tokens列出分词器额外添加到词汇表中的特殊标记或自定义标记
  • normalizer用于定义文本标准化的步骤和规则,用于在分词前对输入文本进行预处理,pre_tokenizer定义分词器如何将输入文本分割为初步的tokens,post_processor定义分词后处理的步骤
  • decoder定义如何将tokens ID 序列解码回原始文本,model定义了分词器的模型信息,如词汇表、合并规则(对于 BPE)等

3.2 tokenizer_config.json

  • tokenizer_config.json是用于生成文本的配置文件,包含了生成文本时的参数设置,如max_lengthtemperaturetop_k
  • tokenizer_config.json的基本结构如下:
{"added_tokens_decoder": [],"bos_token": "begin_of_text |>","clean_up_tokenization_spaces": true,"eos_token": "<|end_of_text|>","model_input_names": ["input_ids", "attention_mask"],"model_max_length": 1000000,"tokenizer_class": "PreTrainedTokenizerFast"
}
  • 其中added_tokens_decoder定义分词器在解码(将 token ID 转换回文本)过程中需要额外处理的特殊标记或自定义标记
  • bos_tokeneos_token定义开始、结束标记,clean_up_tokenization_spaces定义了是否清除分词后的多余空格等
  • tokenizer.jsontokenizer_config.json的区别:tokenizer.json侧重于分词器的训练和加载,而tokenizer_config.json更侧重于生成文本时的参数设置

为什么很多模型都没有 vocab.txt 了?现代分词器采用了更为丰富和灵活的文件格式,如 tokenizer.json,以支持更复杂的分词策略和特殊标记处理

相关文章:

大模型的文件有哪些?

在大模型仓库&#xff08;如Hugging Face&#xff09;中&#xff0c;例如&#xff1a;https://modelscope.cn/models/ZhipuAI/glm-4-9b-chat/files&#xff0c;通常会发现以下几类文件&#xff1a; 模型权重文件&#xff1a;存储训练好的模型参数&#xff0c;是模型推理和微调…...

QT 国际化(翻译)

QT国际化&#xff08;Internationalization&#xff0c;简称I18N&#xff09;是指将一个软件应用程序的界面、文本、日期、数字等元素转化为不同的语言和文化习惯的过程。这使得软件能够在不同的国家和地区使用&#xff0c;并且可以根据用户的语言和地区提供本地化的使用体验。…...

C 进阶 — 指针的使用

C 进阶 — 指针的使用 主要内容 1、字符指针 2、数组指针 3、指针数组 4、数组传参和指针传参 5、函数指针 6、函数指针数组 7、指向函数指针数组的指针 8、 回调函数 9、指针和数组练习题 前节回顾 1、指针就是个变量&#xff0c;用来存放地址&#xff0c;地址唯一…...

【经验分享】容器云运维的知识点

最近忙于备考没关注&#xff0c;有次点进某小黄鱼发现首页出现了我的笔记还被人收费了 虽然我也卖了一些资源&#xff0c;但我以交流、交换为主&#xff0c;笔记都是免费给别人看的 由于当时刚刚接触写的并不成熟&#xff0c;为了避免更多人花没必要的钱&#xff0c;所以决定公…...

MFC学习笔记专栏开篇语

MFC&#xff0c;是一个英文简写&#xff0c;全称为 Microsoft Foundation Class Library&#xff0c;中文翻译为微软基础类库。它是微软开发的一套C类库&#xff0c;是面向对象的函数库。 微软开发它&#xff0c;是为了给程序员提供方便&#xff0c;减少程序员的工作量。如果没…...

电子科技大学《高级算法设计与分析》期末复习问题汇总(客观题-选择题、判断题)

电子科技大学《高级算法设计与分析》问题汇总_已知背包问题的动态规划算法时间复杂度为o(nw),其中n为物品数目,w为背包容量。请-CSDN博客 转载自上面这个链接&#xff0c;古希腊掌管成电专业课的神&#xff01;&#xff01;为了防止他的链接失效&#xff0c;自己也转存一份 &…...

GPTcelltype——scRNA-seq注释

#安装包 install.packages("openai") remotes::install_github("Winnie09/GPTCelltype") #填写API Sys.setenv(OPENAI_API_KEY your_openai_API_key) #加载包 #Load packages library(GPTCelltype) library(openai) #准备文件 #Assume you have already r…...

AI与大数据的深度结合:驱动决策的革命性力量

引言&#xff1a;数字时代的决策挑战 在这个信息爆炸的数字时代&#xff0c;数据早已渗透到我们生活的方方面面。全球每天产生的数据量呈指数级增长&#xff0c;无论是用户的消费行为、设备的运行状态&#xff0c;还是社会热点的实时动态&#xff0c;这些信息的规模和复杂性前所…...

Java多线程与线程池技术详解(九)

面对苦难的态度&#xff1a;《病隙碎笔》“不断的苦难才是不断地需要信心的原因&#xff0c;这是信心的原则&#xff0c;不可稍有更动。” 孤独与心灵的成长&#xff1a;《我与地坛》“孤独的心必是充盈的心&#xff0c;充盈得要流溢出来要冲涌出去&#xff0c;便渴望有人呼应他…...

【常考前端面试题总结】---2025

React fiber架构 1.为什么会出现 React fiber 架构? React 15 Stack Reconciler 是通过递归更新子组件 。由于递归执行&#xff0c;所以更新一旦开始&#xff0c;中途就无法中断。当层级很深时&#xff0c;递归更新时间超过了 16ms&#xff0c;用户交互就会卡顿。对于特别庞…...

什么是大语言模型(LLM)

1. 什么是大语言模型&#xff08;LLM&#xff09;&#xff1f; LLM 是一种基础模型&#xff08;Foundation Model&#xff09;的实例。 基础模型的特点&#xff1a; 使用大量未标注的自监督数据进行预训练。通过学习数据中的模式&#xff0c;生成具有普适性和可适应性的输出…...

柚坛工具箱Uotan Toolbox适配鸿蒙,刷机体验再升级

想要探索智能设备的无限可能&#xff1f;Uotan Toolbox&#xff08;柚坛工具箱&#xff09;将是您的得力助手。这款采用C#语言打造的创新型开源工具箱&#xff0c;以其独特的设计理念和全面的功能支持&#xff0c;正在改变着用户与移动设备互动的方式。 作为一款面向专业用户的…...

supervisor使用详解

参考文章&#xff1a; Supervisor使用详解 Supervisor 是一个用 Python 编写的客户端/服务器系统&#xff0c;它允许用户在类 UNIX 操作系统&#xff08;如 Linux&#xff09;上监控和控制进程。Supervisor 并不是一个分布式调度框架&#xff0c;而是一个进程管理工具&#x…...

win11电源设置在哪里?控制面板在哪里?如何关闭快速启动?

不知道微软咋想的&#xff0c;从win10&#xff08;win8&#xff09;开始搞事情&#xff0c;想把windows娱乐化。 娱乐化的特点就是只照顾傻子不考虑专家&#xff0c;系统设置统统藏起来&#xff0c;开机即用——也只能那么用。 搞两套界面做不到吗&#xff1f; win11非常头疼的…...

【论文阅读笔记】One Diffusion to Generate Them All

One Diffusion to Generate Them All 介绍理解 引言二、相关工作三、方法预备知识训练推理实现细节训练细节 数据集构建实验分结论附录 介绍 Paper&#xff1a;https://arxiv.org/abs/2411.16318 Code&#xff1a;https://github.com/lehduong/onediffusion Authors&#xff1…...

SpringCloud和Nacos的基础知识和使用

1.什么是SpringCloud ​ 什么是微服务&#xff1f; ​ 假如我们需要搭建一个网上购物系统&#xff0c;那么我们需要哪些功能呢&#xff1f;商品中心、订单中心和客户中心等。 ​ 当业务功能较少时&#xff0c;我们可以把这些功能塞到一个SpringBoot项目中来进行管理。但是随…...

人工智能技术的深度解析与推广【人工智能的应用场景】

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c; 忍不住分享一下给大家。点击跳转到网站 学习总结 1、掌握 JAVA入门到进阶知识(持续写作中……&#xff09; 2、学会Oracle数据库入门到入土用法(创作中……&#xff09; 3、手把…...

md5sum -c

md5sum -c xxx 命令用于验证文件的 MD5 校验和是否匹配。具体来说&#xff0c;-c 选项告诉 md5sum 命令去读取指定文件&#xff08;通常是一个包含 MD5 校验和的文件&#xff09;&#xff0c;并与实际文件的 MD5 校验和进行比较。 工作原理&#xff1a; 生成校验和文件&#x…...

excel使用笔记

1.工作表1计算工作表2某列的和 假设我们有两个工作表&#xff0c;分别命名为“Sheet1”和“Sheet2”&#xff0c;我们想要求和这两个工作表中A1到A**单元格的数据&#xff0c;可以在任意一个工作表的单元格中输入以下公式&#xff1a; SUM(Sheet1!A1:A10, Sheet2!A1:A10) SUM…...

keepalived+nginx实现web高可用

目录 高可用集群搭建 Keepalived&#xff0b;nginx实现web高可用 一.节点规划 二.基础准备 1.修改主机名 2.关闭防火墙和selinux服务 三.用keepalived配置高可用 1.安装nginx服务 2.修改nginx配置文件 3.启动nginx 4.访问nginx 5.安装keepalived服务 6.编辑配置文件…...

边界层气象:脉动量预报方程展开 | 湍流脉动速度方差预报方程 | 平均湍流动能收支方程推导

写成分量形式 原始式子&#xff1a; ∂ u i ′ ∂ t u ‾ j ∂ u i ′ ∂ x j u j ′ ∂ u ‾ i ∂ x j u j ′ ∂ u i ′ ∂ x j − 1 ρ ‾ ⋅ ∂ p ′ ∂ x i g θ v ′ θ ‾ v δ i 3 f ϵ i j 3 u j ′ v ∂ 2 u i ′ ∂ x j 2 ∂ ( u i ′ u j ′ ‾ ) ∂ x j…...

TOSUN同星TsMaster使用入门——2、使用TS发送报文,使用graphics分析数据等

在第一章里面已经介绍了关于同星工程的创建和最基础的总线分析&#xff0c;接下来看看怎么使用TS发送报文以及图形化分析数据。 目录 一、使用Graphics分析报文信号/变量&#xff08;对标CANoe Graphics&#xff09; 二、使用数值窗口统计信号值/变量 三、使用TS发送报文 3…...

【操作系统】实验七:显示进程列表

实验7 显示进程列表 练习目的&#xff1a;编写一个模块&#xff0c;将它作为Linux内核空间的扩展来执行&#xff0c;并报告模块加载时内核的当前进程信息&#xff0c;进一步了解用户空间和内核空间的概念。 7.1 进程 进程是任何多道程序设计的操作系统中的基本概念。为了管理…...

day10 电商系统后台API——接口测试(使用postman)

【没有所谓的运气&#x1f36c;&#xff0c;只有绝对的努力✊】 目录 实战项目简介&#xff1a; 1、用户管理&#xff08;8个&#xff09; 1.1 登录 1.2 获取用户数据列表 1.3 创建用户 1.4 修改用户状态 1.5 根据id查询用户 1.6 修改用户信息 1.7 删除单个用户 1.8 …...

JavaScript ES6+ 语法速通

一、ES6 基础语法 1. let 和 const 声明变量 let&#xff1a;块级作用域&#xff0c;可以重新赋值。const&#xff1a;块级作用域&#xff0c;声明常量&#xff0c;不能重新赋值。 let name Li Hua; name Li Ming; // 可修改const age 21; // age 22; // 报错&#xff0…...

移动端h5自适应rem适配最佳方案

网页开发中&#xff0c;我们常用的单位有如下几个&#xff1a; px&#xff1a;像素固定&#xff0c;无法适配各分辨率的移动设备em: 该单位受父容器影响&#xff0c;大小为父元素的倍数rem: 因为html根元素大小为16px&#xff0c;所以默认 1rem 16px&#xff0c;rem只受根元素…...

2024年使用 Cython 加速 Python 的一些简单步骤

文章结尾有最新热度的文章,感兴趣的可以去看看。 本文是经过严格查阅相关权威文献和资料,形成的专业的可靠的内容。全文数据都有据可依,可回溯。特别申明:数据和资料已获得授权。本文内容,不涉及任何偏颇观点,用中立态度客观事实描述事情本身 文章有点长,期望您能坚持看…...

EasyExcel设置表头上面的那种大标题(前端传递来的大标题)

1、首先得先引用easyExcel的版本依赖&#xff0c;我那 <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>2.2.6</version> </dependency> 2、然后得弄直接的实体类&#xff0c;&…...

【Linux网络编程】第十弹---打造初级网络计算器:从协议设计到服务实现

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】【C详解】【Linux系统编程】【Linux网络编程】 目录 1、Protocol.hpp 1.1、Request类 1.1.1、基本结构 1.1.2、构造析构函数 1.1.3、序列化函数 1.1.4、反…...

无限弹窗?无限重启?

Windows开机自启目录&#xff1a; "%USERPROFILE%\AppData\Roaming\Microsoft\windows\StartMenu\Programs\Startup" 基于这个和 start 命令&#xff0c; shutdown 命令&#xff0c; 编写 bat 病毒程序。 无限弹窗 echo start cmd > hack.txt echo %0 >>…...