机器学习预处理-表格数据的空值处理
机器学习预处理-表格数据的空值处理
机器学习预处理-表格数据的分析与可视化中详细介绍了表格数据的python可视化,可视化能够帮助我们了解数据的构成和分布,是我们进行机器学习的必备步骤。上文中也提及,原始的数据存在部分的缺失,需要进行数据的空值处理,下面进行介绍。
PY工程下载:机器学习预处理-表格数据的空值处理-py工程
目录
- 机器学习预处理-表格数据的空值处理
- 0、原始数据集空缺信息查看
- 1、删除空值所在行
- 2、删除空值所在列
- 3、使用中位数、均值进行填补
- 4、使用k-means算法进行补充
0、原始数据集空缺信息查看
使用下面代码进行数据集的加载,并查看数据集的描述信息:
import pandas as pd
import osHOUSING_PATH = os.path.join("datasets", "housing") # 存储位置def load_housing_data(housing_path=HOUSING_PATH):csv_path = os.path.join(housing_path, "housing.csv")return pd.read_csv(csv_path) # 返回 包含所有数据的pandas DataFrame对象housing = load_housing_data()
housing.info()#查看数据集属性描述
1、删除空值所在行
下面代码能够删除空值所在行,只要有空值,这一行都会被删除:
housing_drop_row = housing.dropna() # 删除包含空值的行
housing_drop_row.info() # 查看数据集属性描述
output_path = os.path.join(HOUSING_PATH, "housing_drop_row.csv") # 定义保存清理后数据的路径和文件名
housing_drop_row.to_csv(output_path, index=False) # index=False 表示不保存行索引,将清理后的数据保存到新的 CSV 文件中
删除后的无空值数据如下所示:
2、删除空值所在列
下面代码能够删除空值所在列,只要有空值,这一列都会被删除(从上面截图看一共有9列,删除之后变成了8列):
housing_drop_column = housing.dropna(axis=1) # axis=1 表示按列操作
housing_drop_column.info() # 查看数据集属性描述
output_path = os.path.join(HOUSING_PATH, "housing_drop_column.csv") # 定义保存清理后数据的路径和文件名
housing_drop_column.to_csv(output_path, index=False) # index=False 表示不保存行索引,将清理后的数据保存到新的 CSV 文件中
3、使用中位数、均值进行填补
# 遍历DataFrame的每一列,用该列的中位数填补空值
housing_fill_median = housing.copy()
for column in housing_fill_median.columns:# 跳过非数值列,因为中位数仅适用于数值数据if housing_fill_median[column].dtype in ['int64', 'float64']:# fill_value = housing_fill_median[column].median() # 计算中位数fill_value = housing_fill_median[column].mean() # 计算均值housing_fill_median[column] = housing_fill_median[column].fillna(fill_value) # 直接赋值
housing_fill_median.info()
output_path = os.path.join(HOUSING_PATH, "housing_fill_median.csv") # 定义保存清理后数据的路径和文件名
housing_fill_median.to_csv(output_path, index=False) # index=False 表示不保存行索引,将清理后的数据保存到新的 CSV 文件中
其中,修改下面代码的注释切换使用中位数、均值进行填充:
# fill_value = housing_fill_median[column].median() # 计算中位数
fill_value = housing_fill_median[column].mean() # 计算均值
4、使用k-means算法进行补充
这是一种高级的方式,使用k-means对空值进行填充,如果部分数据是字符串的,则先对其进行编码后在进行K-Means 聚类处理:
# 使用 K-Means 填充空值
# 定义填补函数
def fill_missing_with_kmeans(df, n_clusters=5):df = df.copy()label_encoders = {}# 对非数值型特征进行编码for column in df.select_dtypes(exclude=[np.number]).columns:le = LabelEncoder()# 注意空值先暂时填充为一个特殊字符 '<missing>',避免 LabelEncoder 出错df[column] = df[column].fillna('<missing>')df[column] = le.fit_transform(df[column])label_encoders[column] = le# 找到含有空值的列missing_columns = df.columns[df.isnull().any()]# 针对每一列进行填补for column in missing_columns:# 提取当前列非空的数据用于聚类non_missing_data = df.loc[df[column].notnull(), :]missing_data = df.loc[df[column].isnull(), :]# 如果整列为空,直接跳过if non_missing_data.empty:continue# 使用 K-Means 聚类kmeans = KMeans(n_clusters=n_clusters, random_state=42)cluster_features = non_missing_data.drop(columns=[column])kmeans.fit(cluster_features)# 将每个非空数据点分配到一个簇,并计算簇中心的均值cluster_labels = kmeans.labels_for cluster_idx in range(n_clusters):# 当前簇的数据cluster_data = non_missing_data.loc[cluster_labels == cluster_idx]if column in df.select_dtypes(include=[np.number]).columns:# 如果是数值型特征,用簇中心的均值填充cluster_mean = cluster_data[column].mean()else:# 如果是编码后的字符串特征,用簇中最频繁的值填充cluster_mean = cluster_data[column].mode().iloc[0]# 填充缺失数据中属于该簇的值cluster_missing_data = missing_data[kmeans.predict(missing_data.drop(columns=[column])) == cluster_idx]df.loc[cluster_missing_data.index, column] = cluster_mean# 反编码字符串特征for column, le in label_encoders.items():df[column] = le.inverse_transform(df[column].astype(int))return df# 填充数据中的缺失值
housing_fill_kmeans = fill_missing_with_kmeans(housing)
housing_fill_kmeans.info()
output_path = os.path.join(HOUSING_PATH, "housing_fill_kmeans.csv") # 定义保存清理后数据的路径和文件名
housing_fill_kmeans.to_csv(output_path, index=False) # index=False 表示不保存行索引,将清理后的数据保存到新的 CSV 文件中
相关文章:

机器学习预处理-表格数据的空值处理
机器学习预处理-表格数据的空值处理 机器学习预处理-表格数据的分析与可视化中详细介绍了表格数据的python可视化,可视化能够帮助我们了解数据的构成和分布,是我们进行机器学习的必备步骤。上文中也提及,原始的数据存在部分的缺失࿰…...
数据结构_平衡二叉树
结点类 构造函数分为有参和无参,相同点都是初始化树高为1 class Node { public:int data; // 用于输出int val; // 数据域,用于排序int height; // 树高Node* left;Node* right;Node();Node(int v, int d);static int max(int a, int b); };Node::N…...

C++对象的赋值与复制复制构造函数(指针数据成员)
一、对象的赋值 同类对象之间可以相互赋值,对象赋值的一般形式:对象名2 对象名1; 原理是,赋值运算符的重载。仅赋值,因此赋值前,需要先定义并初始化对象2。 对象的赋值针对指对象中所有数据成员的值; 对…...
Coding Caprice - monotonic stack2
42. 接雨水 class Solution { public:int trap(vector<int>& height) {stack<int> sh;int out 0;for(int i0; i<height.size(); i){while(!sh.empty() && height[sh.top()]<height[i]){int bo height[sh.top()];sh.pop();if(sh.empty()){brea…...
Spring Mvc面试题(常见)
1 Spring MVC的执行流程 用户发起请求,请求先被Servlet拦截以后,转发给SpringMVC框架SpringMVC 里面的DispatcherServlet(核心控制器) 接收到请求,并转发给HandlerMappingHandlerMapping负责解析请求,根据请求信息和配置信息找到匹配的Controller类(当这里有配置拦截器,会…...

opencv # Sobel算子、Laplacian算子、Canny边缘检测、findContours、drawContours绘制轮廓、外接矩形
一、Sobel算子 案例图片 cv2.Sobel(src, ddepth, dx, dy, ksize3, scale1, delta0, borderTypeNone) 功能:用于计算图像梯度(gradient)的函数 参数: src: 输入图像,它应该是灰度图像。 ddepth: 输出图像的所需深度&am…...

Neo4j插入数据逐级提升速度4倍又4倍
语雀版:https://www.yuque.com/xw76/back/dtukgqfkfwg1d6yo 目录 背景介绍初始方案Node()创建事务批量提交记录Node是否存在生成Cypher语句执行数据库参数优化切换成85k个三元组测试建索引(很显著!!!)MATCH…...

C++特殊类设计(单例模式等)
目录 引言 1.请设计一个类,不能被拷贝 2. 请设计一个类,只能在堆上创建对象 为什么设置实例的方法为静态成员呢 3. 请设计一个类,只能在栈上创建对象 4. 请设计一个类,不能被继承 5. 请设计一个类,只能创建一个对…...

J8学习打卡笔记
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 Inception v1算法实战与解析 导入数据数据预处理划分数据集搭建模型训练模型正式训练结果可视化详细网络结构图个人总结 import os, PIL, random, pathlib imp…...
前端学习-操作元素内容(二十二)
目录 前言 目标 对象.innerText 属性 对象.innerHTML属性 案例 年会抽奖 需求 方法一 方法二 总结 前言 曾经沧海难为水,除却巫山不是云。 目标 能够修改元素的文本更换内容 DOM对象都是根据标签生成的,所以操作标签,本质上就是操作DOM对象,…...
【踩坑】pip离线+在线在虚拟环境中安装指定版本cudnn攻略
pip离线在线在虚拟环境中安装指定版本cudnn攻略 在线安装离线安装Windows环境:Linux环境: 清华源官方帮助文档 https://mirrors.tuna.tsinghua.edu.cn/help/pypi/ 标题的离线的意思是先下载whl文件再安装到虚拟环境,在线的意思是直接在当前虚…...

golang操作sqlite3加速本地结构化数据查询
目录 摘要Sqlite3SQLite 命令SQLite 语法SQLite 数据类型列亲和类型——优先选择机制 SQLite 创建数据库SQLite 附加数据库SQLite 分离数据库 SQLite 创建表SQLite 删除表 SQLite Insert 语句SQLite Select 语句SQLite 运算符SQLite 算术运算符SQLite 比较运算符SQLite 逻辑运算…...
vllm加速(以Qwen2.5-7B-instruction为例)与流式响应
1. vllm介绍 什么是vllm? vLLM 是一个高性能的大型语言模型推理引擎,采用创新的内存管理和执行架构,显著提升了大模型推理的速度和效率。它支持高度并发的请求处理,能够同时服务数千名用户,并且兼容多种深度学习框架,…...

WordPress弹窗公告插件-ts小陈
使用效果 使用后网站所有页面弹出窗口 插件特色功能 设置弹窗公告样式:这款插件可展示弹窗样式公告,用户点击完之后不再弹出,不会频繁打扰用户。可设置弹窗中间的logo图:这款插件针对公告图片进行独立设置,你可以在设…...

【ELK】容器化部署Elasticsearch1.14.3集群【亲测可用】
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 1. 部署1.1 单节点1.2 新节点加入集群1.3 docker-compose部署集群 1. 部署 按照官网流程进行部署 使用 Docker 安装 Elasticsearch |Elasticsearch 指南 [8.14] |…...

[SAP ABAP] ALV状态栏GUI STATUS的快速创建
使用事务码SE38进入到指定程序,点击"显示对象列表"按钮 鼠标右键,选择"GUI状态" 弹出【创建状态】窗口,填写状态以及短文本描述以后,点击按钮 点击"调整模板",复制已有程序的状态栏 填…...

【Linux】NET9运行时移植到低版本GLIBC的Linux纯内核板卡上
背景介绍 自制了一块Linux板卡(基于全志T113i) 厂家给的SDK和根文件系统能够提供的GLIBC的版本比较低 V2.25/GCC 7.3.1 这个版本是无法运行dotnet以及dotnet生成的AOT应用的 我用另一块同Cortex-A7的板子运行dotnet的报错 版本不够,运行不了 而我的板子是根本就识…...
深入浅出支持向量机(SVM)
1. 引言 支持向量机(SVM, Support Vector Machine)是一种常见的监督学习算法,广泛应用于分类、回归和异常检测等任务。自1990年代初期由Vapnik等人提出以来,SVM已成为机器学习领域的核心方法之一,尤其在模式识别、文本…...

Vue脚手架相关记录
脚手架 安装与配置 安装node node -> 16.20.2 切换淘宝镜像 npm install -g cnpm -registryhttp://registry.npm.taobao.orgnpm config set registry http://registry.npm.taobao.org/使用了第二个,下一步才有用 安装vue npm install -g vue/clivscode中不给运行vue解…...

基于Docker的Minio分布式集群实践
目录 1. 说明 2. 配置表 3. 步骤 3.1 放行服务端口 3.2 docker-compose 编排 4. 入口反向代理与负载均衡配置 4.1 api入口 4.2 管理入口 5. 用例 6. 参考 1. 说明 以多节点的Docker容器方式实现minio存储集群,并配以nginx反向代理及负载均衡作为访问入口。…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...

Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...

OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...
NPOI操作EXCEL文件 ——CAD C# 二次开发
缺点:dll.版本容易加载错误。CAD加载插件时,没有加载所有类库。插件运行过程中用到某个类库,会从CAD的安装目录找,找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库,就用插件程序加载进…...

Vue ③-生命周期 || 脚手架
生命周期 思考:什么时候可以发送初始化渲染请求?(越早越好) 什么时候可以开始操作dom?(至少dom得渲染出来) Vue生命周期: 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...