当前位置: 首页 > news >正文

二分类模型的性能评价指标

1. 混淆矩阵 (Confusion Matrix)

预测正类预测负类
实际正类 (P)True Positive (TP)False Negative (FN)
实际负类 (N)False Positive (FP)True Negative (TN)
  • True Positive (TP): 模型正确预测为正类的样本数。
  • True Negative (TN): 模型正确预测为负类的样本数。
  • False Positive (FP): 模型错误预测为正类的负类样本数(“假阳性”)。
  • False Negative (FN): 模型错误预测为负类的正类样本数(“假阴性”)。

2. 常见评价指标

(1) 准确率 (Accuracy)

准确率是模型整体预测正确的比例:

\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}

  • 适用场景: 类别平衡时适用。
  • 局限性: 不适用于类别不平衡的问题。例如,若正类样本占比 99%,即使模型始终预测为正类,准确率也会很高,但模型实际效果差。

(2) 精确率 (Precision)

精确率衡量模型预测为正类的样本中,实际为正类的比例:

\text{Precision} = \frac{TP}{TP + FP}

  • 适用场景: 注重 假阳性成本较高 的问题(如垃圾邮件分类,误报可能会打扰用户)。
  • 局限性: 忽略了 FN 的影响,无法全面衡量模型性能。

(3) 召回率 (Recall) / 灵敏度 (Sensitivity) / 真阳性率 (True Positive Rate, TPR)

召回率衡量实际正类样本中,模型正确预测为正类的比例:

\text{Recall} = \frac{TP}{TP + FN}

  • 适用场景: 注重 假阴性成本较高 的问题(如疾病诊断,漏诊可能带来严重后果)。
  • 局限性: 忽略了 FP 的影响。

(4) 特异性 (Specificity) / 真负率 (True Negative Rate, TNR)

特异性衡量实际负类样本中,模型正确预测为负类的比例:

\text{Specificity} = \frac{TN}{TN + FP}

  • 适用场景: 注重负类预测准确性的场景(如安全监控中避免误报)。

(5) F1 分数 (F1-Score)

F1 分数是精确率和召回率的调和平均值,用于平衡两者:

\text{F1-Score} = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}

  • 适用场景: 精确率和召回率同样重要时。
  • 局限性: 无法区分精确率和召回率哪个更重要。

(6) 平均准确率 (Balanced Accuracy)

平衡准确率是正类和负类的平均识别率:

\text{Balanced Accuracy} = \frac{\text{Sensitivity} + \text{Specificity}}{2}

  • 适用场景: 适合类别不平衡数据。

(7) ROC 曲线和 AUC 值
  • ROC 曲线: 以 假阳性率 (FPR) 为横轴,真阳性率 (TPR) 为纵轴绘制的曲线。
    • FPR = \frac{FP}{FP + TN}
    • TPR = \frac{TP}{TP + FN}
  • AUC (Area Under the Curve): ROC 曲线下的面积,用于衡量分类器区分正负类的能力。
    • AUC 越接近 1,分类器性能越好。

(8) PR 曲线和 AUC 值
  • PR 曲线: 以 召回率 (Recall) 为横轴,精确率 (Precision) 为纵轴绘制的曲线。
  • PR-AUC: PR 曲线下的面积,适合不平衡数据集。

相关文章:

二分类模型的性能评价指标

1. 混淆矩阵 (Confusion Matrix) 预测正类预测负类实际正类 (P)True Positive (TP)False Negative (FN)实际负类 (N)False Positive (FP)True Negative (TN) True Positive (TP): 模型正确预测为正类的样本数。True Negative (TN): 模型正确预测为负类的样本数。False Positi…...

鸿蒙操作系统简介

华为鸿蒙系统(HUAWEI HarmonyOS),是华为公司于2019年8月9日在东莞举行的华为开发者大会(HDC.2019)上正式发布的面向全场景的分布式操作系统,可以创造一个超级虚拟终端互联的世界,将人、设备、场…...

单片机:实现蜂鸣器数码管的显示(附带源码)

单片机实现蜂鸣器数码管显示 蜂鸣器和数码管在嵌入式系统中广泛应用。蜂鸣器可以发出声音警告或提示,而数码管则用于显示数字或字母。在本项目中,我们将通过8051单片机实现一个控制蜂鸣器和数码管显示的系统,结合使用蜂鸣器和数码管&#xf…...

C语言期末复习笔记(上)

目录 一、为什么要学习C语言 1.C语言适合做什么 2.开发C程序的步骤 3.常用术语 二、C语言数据结构 1.常量与变量 (1)常量 ​编辑 (2)变量 2.数据类型 ​编辑 (1)数据类型的分类 (2&a…...

HarmonyOS 实时监听与获取 Wi-Fi 信息

文章目录 摘要项目功能概述代码模块详细说明创建 Wi-Fi 状态保存对象Wi-Fi 状态监听模块获取当前 Wi-Fi 信息整合主模块 运行效果展示性能分析总结 摘要 本文展示了如何使用 HarmonyOS 框架开发一个 Demo,用于监听手机的 Wi-Fi 状态变化并实时获取连接的 Wi-Fi 信息…...

Unity超优质动态天气插件(含一年四季各种天气变化,可用于单机局域网VR)

效果展示:https://www.bilibili.com/video/BV1CkkcYHENf/?spm_id_from333.1387.homepage.video_card.click 在你的项目中设置enviro真的很容易!导入包裹并按照以下步骤操作开始的步骤! 1. 拖拽“EnviroSky”预制件(“environme…...

1 JVM JDK JRE之间的区别以及使用字节码的好处

JDK jdk是编译java源文件成class文件的,我们使用javac命令把java源文件编译成class文件。 我们在java安装的目录下找到bin文件夹,如下图所示: 遵循着编译原理,把java源文件编译成JVM可识别的机器码。 其中还包括jar打包工具等。主要是针对…...

【网络安全】网站常见安全漏洞—服务端漏洞介绍

文章目录 网站常见安全漏洞—服务端漏洞介绍引言1. 第三方组件漏洞什么是第三方组件漏洞?如何防范? 2. SQL 注入什么是SQL注入?如何防范? 3. 命令执行漏洞什么是命令执行漏洞?如何防范? 4. 越权漏洞什么是越…...

MAPTR:在线矢量化高精地图构建的结构化建模与学习(2208)

MAPTR: STRUCTURED MODELING AND LEARNING FOR ONLINE VECTORIZED HD MAP CONSTRUCTION MAPTR:在线矢量化高精地图构建的结构化建模与学习 ABSTRACT High-definition (HD) map provides abundant and precise environmental information of the driving scene, se…...

基于容器的云原生,让业务更自由地翱翔云端

无论是要构建一个应用或开发一个更庞大的解决方案,在技术选型时,技术的开放性和可移植性已经成为很多企业优先考虑的问题之一。毕竟没人希望自己未来的发展方向和成长速度被自己若干年前选择使用的某项技术所限制或拖累。 那么当你的业务已经上云&#x…...

大屏开源项目go-view二次开发2----半环形控件(C#)

环境搭建参考: 大屏开源项目go-view二次开发1----环境搭建(C#)-CSDN博客 要做的半环形控件最终效果如下图: 步骤如下: 1 在go-view前端项目的\src\packages\components\Charts目录下新增Others目录,并在Others目录下新增PieExt…...

web:pc端企业微信登录-vue版

官方文档:developer.work.weixin.qq.com/document/pa… 不需要调用ww.register,直接调用ww.createWWLoginPanel即可创建企业微信登录面板 - 文档 - 企业微信开发者中心 (qq.com) 引入 //通过 npm 引入 npm install wecom/jssdk import * as ww from we…...

OpenGL ES 01 渲染一个四边形

项目架构 着色器封装 vertex #version 300 es // 接收顶点数据 layout (location 0) in vec3 aPos; // 位置变量的属性位置值为0 layout (location 1) in vec4 aColors; // 位置变量的属性位置值为1 out vec4 vertexColor; // 为片段着色器指定一个颜色输出void main() {gl…...

【ETCD】【源码阅读】深入解析 EtcdServer.applyEntries方法

applyEntries方法的主要作用是接收待应用的 Raft 日志条目,并按顺序将其应用到系统中;确保条目的索引连续,避免丢失或重复应用条目。 一、函数完整代码 func (s *EtcdServer) applyEntries(ep *etcdProgress, apply *apply) {if len(apply.…...

概率论得学习和整理28:用EXCEL画折线图,X轴数据也被当成曲线的解决办法

目录 1 折线图和散点图,对数据的处理差别 1.1 EXCEL画图的一些默认设置 1.2 多于2列的数据,也是如此 2 如果我们非要以第1列数据为X轴,做一个折线图呢?也能 2.1 首先,把第1列,想当成X轴的数据&#xf…...

tryhackme-Pre Security-Defensive Security Intro(防御安全简介)

任务一:Introduction to Defensive Security防御安全简介 此room的两个要点: Preventing intrusions from occurring 防止入侵发生Detecting intrusions when they occur and responding properly 检测发生的入侵并正确响应 防御安全还有更多内容。 除上…...

27. 元类

一、什么是元类 在 Python 中,一切皆为对象,即类也是一个对象。type 是内置的元类。我们用 class 关键字定义的所有的类以及内置的类都是由元类 type(内置的元类) 实例化产生的。 class Person:def __init__(self, name, age):se…...

PHP木马编写

一、最简单的一句话木马 <?php eval($_REQUEST[cmd]); ?> 1. <?php 和 ?> <?php 和 ?> 是 PHP 代码的开始和结束标记&#xff0c;表示 PHP 代码块的范围。 2. eval() eval() 是 PHP 中的一个内建函数&#xff0c;用来执行字符串类型的 PHP 代码。…...

游戏AI实现-寻路算法(Dijkstra)

戴克斯特拉算法&#xff08;英语&#xff1a;Dijkstras algorithm&#xff09;&#xff0c;又称迪杰斯特拉算法、Dijkstra算法&#xff0c;是由荷兰计算机科学家艾兹赫尔戴克斯特拉在1956年发现的算法。 算法过程&#xff1a; 1.首先设置开始节点的成本值为0&#xff0c;并将…...

Android OpenGLES2.0开发(九):图片滤镜

“当你改变想法的时候&#xff0c;记得也要改变你的世界。”——诺曼文森特皮尔 Android OpenGLES开发&#xff1a;EGL环境搭建Android OpenGLES2.0开发&#xff08;一&#xff09;&#xff1a;艰难的开始Android OpenGLES2.0开发&#xff08;二&#xff09;&#xff1a;环境搭…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...