当前位置: 首页 > news >正文

python:用 sklearn.metrics 评价 K-Means 聚类模型

sklearn 的 metrics 模块提供的聚类模型评价指标如下:

ARI 评价法(兰德系数): adjusted_rand_score
AMI 评价法(相互信息): adjusted_mutual_info_score
V-measure 评分 : completeness_score
FMI 评价法 : fowlkes_mallows_score
轮廓系数评价法 : silhouette_score
Calinski-Harabasz 指数评价法 : calinski_harabasz_score

编写 test_sklearn_4.py 如下

# -*- coding: utf-8 -*-
""" 使用 sklearn 评价 K-Means 聚类模型 """
#import numpy as np
#import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn import preprocessing
from sklearn import cluster# 1.加载 鸢尾花 数据集
iris = datasets.load_iris()
# 数据集的数据
iris_data = iris['data']
# 数据集的标签
iris_target = iris['target']# 使用 FMI 评价法评价 K-Means 聚类模型
from sklearn.metrics import fowlkes_mallows_score
for i in range(2,7):# 构建并训练模型kmeans = cluster.KMeans(n_clusters=i, n_init=10,random_state=123).fit(iris_data)score = fowlkes_mallows_score(iris_target, kmeans.labels_)print(f"iris_{i} 类 FMI 评价分数: {score}")
print('--------')# 使用轮廓系数评价法评价 K-Means 聚类模型
from sklearn.metrics import silhouette_score
silhScore = []
for i in range(2,10):
# 构建并训练模型kmeans = cluster.KMeans(n_clusters=i, n_init=10,random_state=123).fit(iris_data)score = silhouette_score(iris_data, kmeans.labels_)silhScore.append(score)
plt.figure(figsize=(10,6))
plt.plot(range(2,10), silhScore, linewidth=1.5, linestyle='-')
plt.show()# 使用 Calinski-Harabasz 指数评价 K-Means 聚类模型
from sklearn.metrics import calinski_harabasz_score
for i in range(2,7):# 构建并训练模型kmeans = cluster.KMeans(n_clusters=i, n_init=10,random_state=123).fit(iris_data)score = calinski_harabasz_score(iris_data, kmeans.labels_)print(f"iris_{i} 类 calinski_harabasz 指数为: {score}")

cmd
set OMP_NUM_THREADS=1
python test_sklearn_4.py 

(base) D:\python> python test_sklearn_4.py
iris_2 类 FMI 评价分数: 0.7504732564880243
iris_3 类 FMI 评价分数: 0.8208080729114153
iris_4 类 FMI 评价分数: 0.7539699941396392
iris_5 类 FMI 评价分数: 0.7254830776265845
iris_6 类 FMI 评价分数: 0.614344977586966
--------
iris_2 类 calinski_harabasz 指数为: 513.9245459802768
iris_3 类 calinski_harabasz 指数为: 561.62775662962
iris_4 类 calinski_harabasz 指数为: 530.4871420421675
iris_5 类 calinski_harabasz 指数为: 495.54148767768777
iris_6 类 calinski_harabasz 指数为: 469.8366331329009

参考书:【Python 数据分析与应用】第6章 使用 scikit-learn 构建模型

相关文章:

python:用 sklearn.metrics 评价 K-Means 聚类模型

sklearn 的 metrics 模块提供的聚类模型评价指标如下: ARI 评价法(兰德系数): adjusted_rand_score AMI 评价法(相互信息): adjusted_mutual_info_score V-measure 评分 : completeness_score FMI 评价法 : fowlkes_m…...

Spring依赖注入不同类型的数据

目录 前言 回顾 注入集合 List与set集合 Map集合 前言 前面学习依赖注入时注入的都是对象,这里记录注入的值为集合的情况 回顾 在注入的时候,如果要注入的属性的值为字符串或基本数据类型,用value即可;如果要注入一个对象的…...

Linux大杂烩!!!

Linux 命令大全 https://www.runoob.com/linux/linux-command-manual.html Linux下打印ASCII字符 ASCII码对照表及转换器 [rootuntifa_80 ~]# printf "\x30\n" 0 [rootuntifa_80 ~]# echo -e "\u0030" 0tar、gzip 打包解压命令 参考文章:ta…...

12.19问答解析

概述 某中小型企业有四个部门,分别是市场部、行政部、研发部和工程部,请合理规划IP地址和VLAN,实现企业内部能够互联互通,同时要求市场部、行政部和工程部能够访问外网环境(要求使用OSPF协议),研发部不能访问外网环境…...

C语言——实现杨氏矩阵

什么是杨氏矩阵? 概念: 有一个数字矩阵,矩阵的每行从左到右是递增的,矩阵从上到下是递增的 eg: 1 2 3 4 5 6 7 8 9 题目: 请编写程序在这样的矩阵中查找某个数字是否存在。 要求:时间复…...

授权模型PAM

PAM(Privileged Access Management)是一种授权模型,用于管理和控制特权用户的访问权限。PAM的目标是确保特权用户只能在需要时获得所需的特权,并且他们的活动得到适当的监控和审计。 PAM的核心思想是将特权访问权限视为一种受限的…...

【Leecode】子集⭐⭐

子集 [78]子集I 题目描述 给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。 解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。 示例输入 示例 1: 输入:nums [1, 2, 3…...

Linux高性能服务器编程 | 读书笔记 | 12. 多线程编程

12. 多线程编程 注:博客中有书中没有的内容,均是来自 黑马06-线程概念_哔哩哔哩_bilibili 早期Linux不支持线程,直到1996年,Xavier Leroy等人开发出第一个基本符合POSIX标准的线程库LinuxThreads,但LinuxThreads效率…...

[HNCTF 2022 Week1]baby_rsa

源代码: from Crypto.Util.number import bytes_to_long, getPrime from gmpy2 import * from secret import flag m bytes_to_long(flag) p getPrime(128) q getPrime(128) n p * q e 65537 c pow(m,e,n) print(n,c) # 62193160459999883112594854240161159…...

解析Java中的Stream API:函数式编程与性能优化

自Java 8以来,Java语言引入了Stream API,为开发者提供了一种全新的数据处理方式。Stream API支持函数式编程风格,使得对集合、数组、IO流等数据源的操作更加简洁、直观且具有高效的性能优势。通过Stream API,我们可以在不修改原有…...

java简单题目练习

大家好,今天我们不学习新的内容,今天给大家分享一些简单的java算法题供大家练练手,那么我们下面就来看看。 那么大家下去练习一下,我们明天继续讲解类和对象的相关知识,谢谢大家!!!...

Kaggler日志--Day9

进度24/12/18 昨日复盘: 补充并解决Day7Kaggler日志–Day7统计的部分问题 今日进度: 继续完成Day8Kaggler日志–Day8统计问题的解答 明日规划: 今天报名了Regression with an Insurance Dataset算是新手村练习比赛,截止时间是2…...

OpenCVE:一款自动收集NVD、MITRE等多源知名漏洞库的开源工具,累计收录CVE 27万+

漏洞库在企业中扮演着至关重要的角色,不仅提升了企业的安全防护能力,还支持了安全决策、合规性要求的满足以及智能化管理的发展。前期博文《业界十大知名权威安全漏洞库介绍》介绍了主流漏洞库,今天给大家介绍一款集成了多款漏洞库的开源漏洞…...

麒麟信安参编的《能源企业数字化转型能力评价 技术可控》团体标准发布

近日,中国能源研究会发布公告,《能源企业数字化转型能力评价 技术可控》团体标准发布。该标准由麒麟信安与国网湖北省电力有限公司武汉供电公司、国网智能电网研究院有限公司、中能国研(北京)电力科学研究院等单位联合编制。 《能…...

戴尔物理机更换完Raid控制器(阵列卡),启动服务器失败

背景 我们使用的物理机是戴尔的POWEREDGE R730机器,由于硬件损坏导致该问题的延申,再更换完Raid的控制器(阵列卡)之后导致启动服务器报错。 报错: There are offline or missing virtual drives with preserved cac…...

计算机基础知识——数据结构与算法(二)(山东省大数据职称考试)

大数据分析应用-初级 第一部分 基础知识 一、大数据法律法规、政策文件、相关标准 二、计算机基础知识 三、信息化基础知识 四、密码学 五、大数据安全 六、数据库系统 七、数据仓库. 第二部分 专业知识 一、大数据技术与应用 二、大数据分析模型 三、数据科学 大数据相关标准…...

docsify

macos ➜ ~ node -v v16.20.2➜ ~ npm --version 8.19.4全局安装 docsify-cli 工具 npm i docsify-cli -g➜ ~ docsify -vdocsify-cli version:4.4.4初始化项目 docsify init ./docsls -ah docs . .. .nojekyll README.md index.htmlindex.html 入口文件README.md 会…...

GEE教程——使用 CHIRPS 和 GSMaP 数据集计算并可视化了特定区域的降水量

目录 简介 函数 ee.Image.pixelLonLat() No arguments. Returns: Image visualize(bands, gain, bias, min, max, gamma, opacity, palette, forceRgbOutput) Arguments: Returns: Image 代码解释 代码 结果 简介 GEE教程——使用 CHIRPS 和 GSMaP 数据集计算并可视…...

前端实现页面自动播放音频方法

前端实现页面视频在谷歌浏览器中自动播放音频方法 了解Chrome自动播放策略 在Chrome和其他现代浏览器中,为了改善用户体验,自动播放功能受到了限制。Chrome的自动播放策略主要针对有声音的视频,目的是防止页面在用户不知情的情况下自动播放声…...

【Nginx-5】Nginx 限流配置指南:保护你的服务器免受流量洪峰冲击

在现代互联网应用中,流量波动是常态。无论是突发的用户访问高峰,还是恶意攻击,都可能导致服务器资源耗尽,进而影响服务的可用性。为了应对这种情况,限流(Rate Limiting)成为了一种常见的保护措施…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​,覆盖应用全生命周期测试需求,主要提供五大核心能力: ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

Spring Boot面试题精选汇总

🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

Robots.txt 文件

什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则&#xf…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中,理解API(应用程序接口)和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能,使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...