当前位置: 首页 > news >正文

面试小札:Java后端闪电五连鞭_8

1. Kafka消息模型及其组成部分

- 消息(Message):是Kafka中最基本的数据单元。消息包含一个键(key)、一个值(value)和一个时间戳(timestamp)。键可以用于对消息进行分区等操作,值是实际的消息内容,时间戳用于记录消息产生的时间,在一些基于时间的处理场景中很有用。

- 主题(Topic):是消息的分类。生产者将消息发送到特定的主题,消费者从主题中订阅并接收消息。例如,可以有一个名为“user - transactions”的主题,用于处理用户交易相关的消息。

- 分区(Partition):主题可以被划分为多个分区。分区是有序的、不可变的消息序列。分区的主要目的是实现数据的并行处理和存储。每个分区在物理上对应一个文件夹,存储了该分区的消息数据。分区中的消息是有顺序的,通过偏移量(offset)来标识消息在分区中的位置,偏移量是一个单调递增的数字。

- 生产者(Producer):负责将消息发送到Kafka的主题中。生产者可以将消息发送到指定的主题和分区。在发送消息时,生产者可以选择同步或异步的方式。同步发送会等待Kafka确认消息已成功写入后再继续,异步发送则不会等待,这样可以提高发送效率,但可能会丢失消息(如果没有正确配置)。

- 消费者(Consumer):从Kafka的主题中读取消息。消费者以消费者组(Consumer Group)的形式进行组织。同一个消费者组中的消费者会协调消费主题中的分区,以实现负载均衡和容错。例如,如果一个主题有3个分区,一个消费者组有3个消费者,那么每个消费者可以消费一个分区的消息;如果消费者组中的消费者数量多于分区数量,那么部分消费者会处于空闲状态。消费者通过跟踪偏移量来记录自己消费到的位置。

- 消费者组(Consumer Group):是多个消费者的集合。消费者组的作用是保证在一个组内,一个分区的消息只会被一个消费者消费,不同消费者组可以同时消费相同主题的消息。这样可以实现不同的应用场景,比如一个消费者组用于实时处理消息,另一个消费者组用于离线分析消息。

 

2. 一个partition可以被多个消费者消费吗? 

- 在同一个消费者组内,一个分区(Partition)只能被一个消费者消费。这是Kafka消费者组的设计原则,目的是保证消息消费的顺序性和负载均衡。如果一个分区的消息被多个消费者同时消费,就很难保证消息的顺序,而且会导致消息的重复处理。

- 但是,不同消费者组中的消费者可以同时消费同一个分区的消息。例如,有两个消费者组GroupA和GroupB,它们都可以消费主题TopicX中的某个分区PartitionY的消息。这种情况在实际应用中很有用,比如一个消费者组用于实时处理消息,另一个消费者组用于离线分析消息,它们可以共享相同的消息源(即分区),但处理方式不同。

 

3. Kafka ack有几种方式?

- Kafka的消息确认(acknowledgement,ack)机制主要有三种方式:

- acks = 0:生产者发送消息后,不需要等待任何来自Kafka broker的确认就认为消息发送成功。这种方式的优点是发送速度非常快,因为不需要等待确认。但是,它的可靠性很低,消息可能会丢失。例如,如果在消息发送到Kafka broker之前,生产者发生故障或者网络出现问题,消息就会丢失。

- acks = 1:生产者发送消息后,只要分区(Partition)的主副本(Leader Replica)成功接收并写入消息,就认为消息发送成功。这种方式的发送速度比较快,并且在一定程度上保证了消息的可靠性。不过,如果主副本写入消息后,还没来得及将消息同步到其他副本(Follower Replica)就发生故障,那么消息就可能丢失。

- acks = - 1(或acks = all):生产者发送消息后,需要等待分区的所有副本(包括主副本和所有从副本)都成功接收并写入消息后,才认为消息发送成功。这种方式的可靠性最高,但是发送速度相对较慢,因为需要等待所有副本的确认。它可以保证即使部分副本出现故障,消息也不会丢失。

 

4 消息消费堆积了,怎么办?

- 增加消费者数量:如果消息堆积是因为消费者处理能力不足,可以考虑增加消费者数量。通过调整消费者组中的消费者数量,让更多的消费者同时处理消息。例如,如果一个主题有多个分区,且消息堆积在这些分区上,可以增加消费者组中的消费者数量,使其与分区数量匹配或者超过分区数量,以加快消息的消费速度。但是要注意,在同一个消费者组中,一个分区只能被一个消费者消费,所以增加消费者数量要根据分区数量合理调整。

- 优化消费者处理逻辑:检查消费者的处理逻辑是否存在性能瓶颈。可能是消费者在处理消息时进行了复杂的计算、网络请求或者数据库操作等,导致处理速度过慢。可以对这些处理逻辑进行优化,比如采用异步处理、批量处理、缓存数据等方式来提高处理效率。例如,如果消费者在处理消息时需要频繁地访问数据库,可以考虑使用缓存来减少数据库的访问次数,从而加快消息处理速度。

- 调整消息的生产速度:如果消息的生产速度远远超过消费速度,可以考虑限制消息的生产速度。可以在生产者端设置合适的发送频率或者消息队列的大小等参数,以控制消息的生产。例如,通过限制生产者每秒发送的消息数量,使其与消费者的处理能力相匹配,从而避免消息堆积。

- 检查Kafka集群性能:消息堆积也可能是由于Kafka集群本身的性能问题导致的。检查Kafka broker的资源使用情况,如CPU、内存、磁盘I/O和网络带宽等。如果是集群性能不足,可以考虑增加broker节点、升级硬件设备或者优化Kafka的配置参数来提高集群的性能。

 

5 RocketMQ和Kafka区别

- 消息模型

- Kafka:采用分区(Partition)模型,主题(Topic)可以划分为多个分区,消息在分区内有序,通过消费者组(Consumer Group)来实现负载均衡和消息消费。一个消费者组内的消费者协调消费分区,保证一个分区的消息只被一个消费者消费。

- RocketMQ:也有主题和队列(Queue)的概念,队列类似于Kafka的分区。消息在队列内有序,消费者通过订阅主题下的队列来消费消息。RocketMQ支持消息的广播消费(一个消息可以被同一个消费者组中的所有消费者消费)和集群消费(类似于Kafka的消费者组模式,一个队列的消息被一个消费者消费)。

- 消息可靠性

- Kafka:通过副本(Replica)机制来保证消息的可靠性。可以配置不同的消息确认(ack)方式,如acks = 0、acks = 1和acks = - 1来平衡消息发送速度和可靠性。当acks = - 1时,消息需要写入所有副本后才确认发送成功,可靠性较高。

- RocketMQ:支持消息的持久化存储,通过主从架构来保证消息的可靠性。消息在发送到主节点后,会同步到从节点,并且支持同步刷盘和异步刷盘等方式来确保消息存储的可靠性。在消费端,提供了多种消息确认机制,保证消息不会丢失或重复消费。

- 性能方面

- Kafka:在高吞吐量的场景下表现出色,尤其是在处理海量的日志数据等场景。它的分区机制和异步发送等特性使得它能够高效地处理大量的消息。不过,在低延迟的实时消息处理场景中,可能需要进行一些优化才能满足要求。

- RocketMQ:性能也很高,在消息的延迟方面相对有优势,能够提供较低的消息延迟。它在分布式事务消息等复杂场景下也有较好的支持,适合对消息的实时性和事务性要求较高的应用场景。

- 功能特性

- Kafka:生态系统丰富,与大数据生态集成良好,如和Spark、Flink等大数据处理框架可以无缝集成,用于实时流处理和离线批处理。它还提供了一些高级功能,如压缩消息、事务支持(相对较弱)等。

- RocketMQ:有比较完善的消息过滤功能,支持根据消息的属性等进行过滤。同时,它在分布式事务消息处理方面有比较成熟的解决方案,如半消息(Half - Message)机制,可以更好地支持电商等领域的业务场景,如订单处理等。

 

相关文章:

面试小札:Java后端闪电五连鞭_8

1. Kafka消息模型及其组成部分 - 消息(Message):是Kafka中最基本的数据单元。消息包含一个键(key)、一个值(value)和一个时间戳(timestamp)。键可以用于对消息进行分区等…...

java error(2)保存时间带时分秒,回显时分秒变成00:00:00

超简单,顺带记录一下 1.入参实体类上使用注释:JsonFormat(pattern “yyyy-MM-dd”) 导致舍弃了 时分秒的部分。 2.数据库字段对应的类型是 date。date就是日期,日期就不带时分秒。 3.返参实体类使用了JsonFormat(pattern “yyyy-MM-dd”) 导…...

计算机毕业设计python+spark+hive动漫推荐系统 漫画推荐系统 漫画分析可视化大屏 漫画爬虫 漫画推荐系统 漫画爬虫 知识图谱 大数据毕设

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...

数字IC后端设计实现篇之TSMC 12nm TCD cell(Dummy TCD Cell)应该怎么加?

TSMC 12nm A72项目我们需要按照foundary的要求提前在floorplan阶段加好TCD Cell。这个cell是用来做工艺校准的。这个dummy TCD Cell也可以等后续Calibre 插dummy自动插。但咱们项目要求提前在floorplan阶段就先预先规划好位置。 TSCM12nm 1P9M的metal stack结构图如下图所示。…...

(8)YOLOv6算法基本原理

一、YOLOv6 模型原理 发布日期:2022年6月 作者:美团技术团队 骨干网络:参考了 RepVGG 的设计,将重参数化能力进行补强,增强了模型结构的重参数化能力。使用了深度可分离卷积和跨阶段连接等技术,旨在提升…...

LNMP+discuz论坛

0.准备 文章目录 0.准备1.nginx2.mysql2.1 mysql82.2 mysql5.7 3.php4.测试php访问mysql5.部署 Discuz6.其他 yum源: # 没有wget,用这个 # curl -o /etc/yum.repos.d/CentOS-Base.repo https://mirrors.aliyun.com/repo/Centos-7.repo[rootlocalhost ~]#…...

在linux系统的docker中安装GitLab

一、安装GitLab: 在安装了docker之后就是下载安装GitLab了,在linux系统中输入命令:docker search gitlab就可以看到很多项目,一般安装第一个,它是英文版的,如果英文不好可以安装twang2218/gitlab-ce-zh。 …...

Python面试常见问题及答案12

问题: 请解释Python中的GIL(全局解释器锁)是什么? ○ 答案: GIL是Python解释器中的一种机制,用于确保任何时候只有一个线程在执行Python字节码。这在多线程场景下可能影响性能优化,但对于单线程…...

从0-1开发一个Vue3前端系统页面-9.博客页面布局

本节主要实现了博客首页界面的基本布局并完善了响应式布局,因为完善了响应式布局故对前面的页面布局有所改动,这里会将改动后的源码同步上传。 1.对页面头部的用户信息进行设计和美化 布局设计参考 :通常初级前端的布局会通过多个div划分区域…...

[手机Linux] 六,ubuntu18.04私有网盘(NextCloud)安装

一,LNMP介绍 LNMP一键安装包是一个用Linux Shell编写的可以为CentOS/RHEL/Fedora/Debian/Ubuntu/Raspbian/Deepin/Alibaba/Amazon/Mint/Oracle/Rocky/Alma/Kali/UOS/银河麒麟/openEuler/Anolis OS Linux VPS或独立主机安装LNMP(Nginx/MySQL/PHP)、LNMPA(Nginx/MySQ…...

白话java设计模式

创建模式 单例模式(Singleton Pattern): 就是一次创建多次使用,它的对象不会重复创建,可以全局来共享状态。 工厂模式(Factory Method Pattern): 可以通过接口来进行实例化创建&a…...

助力 Tuanjie OpenHarmony 开发:如何使用工具包 Hilog 和 SDK Kits Package?

随着团结引擎从 1.0.0 迭代至 1.3.0,越来越多的开发者开始使用团结引擎开发 OpenHarmony 应用。 在开发的过程中,我们也收到了大量反馈,尤其是在日志、堆栈和性能数据方面,这些信息对开发和调试过程至关重要。同时,我…...

NSDT 3DConvert:高效实现大模型文件在线预览与转换

NSDT 3DConvert 作为一个 WebGL 展示平台,能够实现多种模型格式免费在线预览,并支持大于1GB的OBJ、STL、GLTF、点云等模型进行在线查看与交互,这在3D模型展示领域是一个相当强大的功能。 平台特点 多格式支持 NSDT 3DConvert兼容多种3D模型…...

电商数据采集电商,行业数据分析,平台数据获取|稳定的API接口数据

电商数据采集可以通过多种方式完成,其中包括人工采集、使用电商平台提供的API接口、以及利用爬虫技术等自动化工具。以下是一些常用的电商数据采集方法: 人工采集:人工采集主要是通过基本的“复制粘贴”的方式在电商平台上进行数据的收集&am…...

VUE+Node.js+mysq实现响应式个人博客|项目初始化+路由配置+基础组件搭建

Day 1 开发文档:项目初始化与基础架构搭建 一、项目初始化 1. 创建项目 首先,我们使用 Vite 创建一个基于 Vue 3 的项目: # 创建项目 npm create vitelatest my-blog -- --template vue # 这条命令会创建一个名为 my-blog 的新项目&#…...

Python如何正确解决reCaptcha验证码(9)

前言 本文是该专栏的第73篇,后面会持续分享python爬虫干货知识,记得关注。 我们在处理某些国内外平台项目的时候,相信很多同学或多或少都见过,如下图所示的reCaptcha验证码。 而本文,笔者将重点来介绍在实战项目中,遇到上述中的“reCaptcha验证码”,如何正确去处理并解…...

web3跨链预言机协议-BandProtocol

项目简介 Band Protocol 项目最初于 2017年成立并建立在 ETH 之上。后于2020年转移到了 Cosmos 网络上,基于 Cosmos SDK 搭建了一条 Band Chain 。这是一条 oracle-specific chain,主要功能是提供跨链预言机服务。Cosmos生态上第一个,也是目…...

JAVA将集合切分成指定份数(简易)

JAVA将集合切分成指定份数 主要方法 /** * 主要方法* param list 切分的集合* param count 切成的份数* return*/ public static List<List> splitList(List list,int count){if(count <0 ){return Lists.newArrayList();}List<List> result Lists.newArrayL…...

深度神经网络(DNN)在时序预测中的应用与缺陷

目录 ​编辑 一、DNN在时序预测中的应用 二、DNN的缺陷 三、技术挑战与未来趋势 四、结论 随着大数据时代的到来&#xff0c;深度学习技术在时序预测领域扮演着越来越重要的角色。深度神经网络&#xff08;DNN&#xff09;因其强大的非线性拟合能力和自动特征提取能力&…...

springboot445新冠物资管理(论文+源码)_kaic

摘 要 使用旧方法对新冠物资管理的信息进行系统化管理已经不再让人们信赖了&#xff0c;把现在的网络信息技术运用在新冠物资管理的管理上面可以解决许多信息管理上面的难题&#xff0c;比如处理数据时间很长&#xff0c;数据存在错误不能及时纠正等问题。这次开发的新冠物资管…...

C++算法第十一天

本篇文章我们继续学习动态规划 目录 第一题 题目链接 题目解析 代码原理 代码编写 第二题 题目链接 题目解析 代码原理 代码编写 第三题 题目链接 题目解析 代码原理 代码编写 第四题 题目链接 题目解析 代码原理 代码编写 第五题 题目链接 题目解析 代…...

常 用 类

一、 Object 类 1. Object 类的介绍 (1) Object 类位于 java.lang 包中&#xff0c;是继承关系的根类、超类&#xff0c;是所有类的父类 ( 直接的父类或是间接父类 ) (2) Object 类型的引用可以用于存储任意类型的对象。 (3) Object 类中定义方法&#xff0c;所有类都可以…...

ACL(访问控制列表)

ACL技术概述 • 随着网络的飞速发展&#xff0c;网络安全和网络服务质量 QoS &#xff08; Quality of Service &#xff09;问题日益突出。 ▫ 园区重要服务器资源被随意访问&#xff0c;园区机密信息容易泄露&#xff0c;造成安全隐患。 ▫ Internet 病毒肆意侵略园区内网&am…...

json字符串转json

问题 Json格式化后&#xff0c;存在各种\n ,\r,以及空格&#xff0c;怎么办&#xff1f; 直接replaceAlll(“\s”,“”) 吗&#xff1f; 解决办法&#xff1a; //使用hutool的jsonutil工具&#xff0c;直接将其转换为json&#xff0c;再转string, //这样就不需要使用 各种re…...

GPT-Omni 与 Mini-Omni2:创新与性能的结合

近年来&#xff0c;随着人工智能技术的飞速发展&#xff0c;各种模型和平台应运而生&#xff0c;以满足从个人用户到企业级应用的多样化需求。在这一领域&#xff0c;GPT-Omni 和 Mini-Omni2 是两款备受瞩目的技术产品&#xff0c;它们凭借独特的设计和强大的功能&#xff0c;在…...

探秘 JSON:数据交互的轻盈使者

文章目录 一、JSON是什么二、JSON的语法规则三、应用场景四、性能优化五、总结 一、JSON是什么 JSON&#xff08;JavaScript Object Notation&#xff09;即 JavaScript 对象表示法&#xff0c;是一种轻量级的数据交换格式。JSON 以键值对的形式组织数据&#xff0c;键是字符串…...

源码分析之Openlayers中的Attribution属性控件

概述 本文主要介绍 Openlayers 中Attribution属性控件的源码实现&#xff0c;该控件也是 Openlayers 中三个默认控件之一。默认情况下&#xff0c;控件会显示在地图的右下角&#xff0c;可以通过控件的类名设置CSS属性控制。实际应用中该控件主要显示与图层源source相关的所有…...

Shell自定义(二)

1.Shell自定义 1.初始化 定义全局变量environ&#xff0c;把g_env的内容用memset初始化为0&#xff0c;这里用malloc开辟的空间为对应环境变量的长度1&#xff0c;多1位置是最后结束符0&#xff0c;strcpy把此时的对应的环境变量拷贝到g_env里面&#xff0c;下面是新增一个环…...

自然语言处理:我的学习心得与笔记

Pytorch 1.Pytorch基本语法 1.1 认识Pytorch 1.2 Pytorch中的autograd 2.Pytorch初步应用 2.1 使用Pytorch构建一个神经网络 2.2 使用Pytorch构建一个分类器 小节总结 学习了什么是Pytorch. 。Pytorch是一个基于Numpy的科学计算包,作为Numpy的替代者,向用户提供使用GPU强大…...

Oracle 中什么情况下 可以使用 EXISTS 替代 IN 提高查询效率

为什么 EXISTS 更高效&#xff1f; EXISTS 提前终止&#xff1a; EXISTS 一旦在子查询中找到第一个匹配项&#xff0c;就会立即返回 TRUE&#xff0c;不再继续扫描子查询中的其他记录。IN 必须扫描整个子查询的结果集&#xff0c;将所有结果与主查询的每一行进行对比。大数据集…...