第R3周:RNN-心脏病预测
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
🍺要求:
1
本地读取并加载数据。
2
了解循环神经网络(RNN)的构建过程
3
测试集accuracy到达87%
🍻拔高:
1
测试集accuracy到达89%!
我们的代码流程图如下所示:
一、RNN是什么
传统神经网络的结构比较简单:输入层 – 隐藏层 – 输出层
RNN 跟传统神经网络最大的区别在于每次都会将前一次的输出结果,带到下一次的隐藏层中,一起训练。如下图所示:
这里用一个具体的案例来看看 RNN 是如何工作的:用户说了一句“what time is it?”,我们的神经网络会先将这句话分为五个基本单元(四个单词+一个问号)
然后,按照顺序将五个基本单元输入RNN网络,先将 “what”作为RNN的输入,得到输出01
以此类推,我们可以看到,前面所有的输入产生的结果都对后续的输出产生了影响(可以看到圆形中包含了前面所有的颜色)
二、前期准备
1. 设置GPU
import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")gpus
2. 导入数据
🥂 数据介绍:
●
age:1) 年龄
●
sex:2) 性别
●
cp:3) 胸痛类型 (4 values)
●
trestbps:4) 静息血压
●
chol:5) 血清胆甾醇 (mg/dl
●
fbs:6) 空腹血糖 > 120 mg/dl
●
restecg:7) 静息心电图结果 (值 0,1 ,2)
●
thalach:8) 达到的最大心率
●
exang:9) 运动诱发的心绞痛
●
oldpeak:10) 相对于静止状态,运动引起的ST段压低
●
slope:11) 运动峰值 ST 段的斜率
●
ca:12) 荧光透视着色的主要血管数量 (0-3)
●
thal:13) 0 = 正常;1 = 固定缺陷;2 = 可逆转的缺陷
●
target:14) 0 = 心脏病发作的几率较小 1 = 心脏病发作的几率更大
import pandas as pd
import numpy as npdf = pd.read_csv("/home/aiusers/space_yjl/深度学习训练营/进阶/第R3周:RNN-心脏病预测/heart.csv")
df
3. 检查数据
# 检查是否有空值
df.isnull().sum()
三、数据预处理 1. 划分训练集与测试集
🍺 测试集与验证集的关系:
1
验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
2
但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。
3
我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集。
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_splitX = df.iloc[:,:-1]
y = df.iloc[:,-1]X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, random_state = 1)
X_train.shape, y_train.shape
2. 标准化
# 将每一列特征标准化为标准正太分布,注意,标准化是针对每一列而言的
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)
四、构建RNN模型
关键参数说明
●
units: 正整数,输出空间的维度。
●
activation: 要使用的激活函数。 默认:双曲正切(tanh)。 如果传入 None,则不使用激活函数 (即 线性激活:a(x) = x)。
●
use_bias: 布尔值,该层是否使用偏置向量。
●
kernel_initializer: kernel 权值矩阵的初始化器, 用于输入的线性转换 (详见 initializers)。
●
recurrent_initializer: recurrent_kernel 权值矩阵 的初始化器,用于循环层状态的线性转换 (详见 initializers)。
●
bias_initializer:偏置向量的初始化器 (详见initializers).
●
dropout: 在 0 和 1 之间的浮点数。 单元的丢弃比例,用于输入的线性转换。
import tensorflow
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,LSTM,SimpleRNNmodel = Sequential()
model.add(SimpleRNN(128, input_shape= (13,1),return_sequences=True,activation='relu'))
model.add(SimpleRNN(64,return_sequences=True, activation='relu'))
model.add(SimpleRNN(32, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.summary()
五、编译模型
opt = tf.keras.optimizers.Adam(learning_rate=1e-4)
model.compile(loss='binary_crossentropy', optimizer=opt,metrics=['accuracy'])
六、训练模型
epochs = 100history = model.fit(X_train, y_train, epochs=epochs, batch_size=128, validation_data=(X_test, y_test),verbose=1)
七、模型评估
import matplotlib.pyplot as pltacc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(epochs)plt.figure(figsize=(14, 4))
plt.subplot(1, 2, 1)plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
八、总结
代码功能概述
这段代码使用 TensorFlow 库构建了一个简单的基于循环神经网络(RNN)的模型,用于心脏病预测(从代码上下文推测用途,具体采用了较为简单的 SimpleRNN 层作为循环层来处理序列数据,并在此基础上搭建了后续的全连接层,最终输出一个介于 0 到 1 之间的值用于预测某种二分类结果(例如是否患有心脏病),0 和 1 分别对应不同类别(比如 0 表示未患病,1 表示患病)。
模型结构
循环层:
首先添加了一个 SimpleRNN 层,设置了该层有 200 个神经元,输入形状为 (13, 1),意味着输入的数据应该是一个形状为 (样本数量,时间步长为 13, 特征维度为 1) 的三维张量,激活函数选用了 relu(修正线性单元,能加快训练收敛速度等优点),这个 SimpleRNN 层会对输入的序列数据按时间步依次处理,提取其中的特征信息并传递给后续层。
全连接层:
接着添加了一个具有 100 个神经元的 Dense (全连接层),激活函数同样为 relu,起到进一步特征整合、变换的作用,将 SimpleRNN 层输出的特征进一步映射到新的空间维度。
最后又添加了一个只有 1 个神经元的 Dense 层,激活函数为 sigmoid,用于输出最终的预测概率值,将前面层处理后的特征转换为一个 0 到 1 之间的概率,方便进行二分类的判断。
相关文章:

第R3周:RNN-心脏病预测
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 🍺要求: 1 本地读取并加载数据。 2 了解循环神经网络(RNN)的构建过程 3 测试集accuracy到达87% 🍻拔…...

【数值特性库】入口文件
数值特性库入口文件为lib.rs。该文件定义一系列数字特性的trait(特征),这些特性可以被不同的数字类型实现,从而提供一套通用的数值操作方法。下面是对代码中关键部分的解释: 一、基础设置 #
RestTemplate实时接收Chunked编码传输的HTTP Response
学习调用AI接口的时候,流式响应都是使用的 Transfer-Encoding: chunked,图方便想用RestTemplate,但是平时用到的都是直接返回响应对象的类型。使用bing搜索到一种方式,使用下面的代码来读取,于是掉这个坑里了ÿ…...

GIT区域介绍及码云+GIt配置仓库
GIT区域介绍 创建文件夹git init 1、git有3个区域 工作区(working directory):项目的根目录,不包 括.git在内的其他文件暂存区(stage area):是一个看不见的区域,git add 命令就是将文…...

网络安全怎么学习
当我们谈论网络安全时,我们正在讨论的是保护我们的在线空间,这是我们所有人的共享责任。网络安全涉及保护我们的信息,防止被未经授权的人访问、披露、破坏或修改。 一、网络安全的基本概念 网络安全是一种保护:它涉及保护我们的设…...

PugiXML,一个高效且简单的 C++ XML 解析库!
嗨,大家好!我是一行。今天要给大家介绍 PugiXML,这可是 C 里处理 XML 数据的得力助手。它能轻松地读取、修改和写入 XML 文件,就像一个专业的 XML 小管家,不管是解析配置文件,还是处理网页数据,…...

Linux设备树的驱动开发
概述 本文介绍了platform框架下的设备驱动开发流程和方法,主要包括设备树、驱动程序和应用程序的开发。以随机数驱动为例,实现了应用程序调用库函数,通过系统调用陷入内核,最后执行硬件驱动,获取真随机数的过程。 添…...

连锁?下沉?AI?2025年餐饮新活力!
如果要用几个词来形容 2024 年的餐饮业,这些词大概率会是「卷、难、惨」,用著名商业顾问刘润的话来说就是「卷到极致」。虽然餐饮人在社交平台上叫苦连天,但当我们查看餐饮大盘数据时发现,大盘在涨,与个体餐饮人的实感…...

Javascript中如何实现函数缓存?函数缓存有哪些应用场景?
今天要聊的一个很经典的问题——如何在JavaScript中实现函数缓存,以及它有哪些应用场景。 我们先来明确一下,函数缓存是什么。简单来说,函数缓存是将函数的运算结果存储起来,以便下次用到相同的输入时,可以直接返回结…...

子页面访问父页面
子页面访问父页面的方式主要依赖于页面之间的关系,特别是它们是否处于同一域、是否是嵌套在 <iframe> 中、或者通过弹出窗口打开。下面是几种常见的子页面访问父页面的方法: 1. 通过 window.parent 访问父页面(适用于嵌套的 iframe&am…...

芯片级IO (Pad) Ring IP Checklist
SoC top顶层数字后端实现都会涉及到IO Ring (PAD Ring)的设计。这里面包括VDD IO,VDDIO IO, Signal IO, Corner IO,Filler IO,IO power cut cell等等。 数字后端零基础入门系列 | Innovus零基础LAB学习Day2 数字IC后端实现TOP F…...

计算机毕业设计论文指导
计算机毕业设计论文指导 计算机毕业设计辅导一站式!太香了💪 [赞R][赞R][赞R]嗨喽!计算机专业的宝子们! 计算机毕设辅导专业靠谱的他来了!! 是不是还在为选题程序不会做而感到苦难? 论文没思路赶…...

Electron-Vue 开发下 dev/prod/webpack server各种路径设置汇总
背景 在实际开发中,我发现团队对于这几个路径的设置上是纯靠猜的,通过一点点地尝试来找到可行的路径,这是不应该的,我们应该很清晰地了解这几个概念,以下通过截图和代码进行细节讲解。 npm run dev 下的路径如何处理&…...

Vue.js前端框架教程9:Vue插槽slot用法
文章目录 插槽(Slots)无名插槽(默认插槽)具名插槽reference 插槽使用 v-slot 的缩写语法 插槽(Slots) 在 Vue 中,插槽(Slots)是一种组件内容分发的机制,允许…...

初学stm32 --- NVIC中断
目录 STM32 NVIC 中断优先级管理 NVIC_Type: ISER[8]: ICER[8]: ISPR[8]: ICPR[8]: IABR[8]: IP[240]: STM32 的中断分组: 中断优先级分组函数 NVIC_PriorityGroupConfig 中断初始化函…...

Jest 入门指南:从零开始编写 JavaScript 单元测试
前言 在前端开发中,单元测试已经成为确保代码质量和稳定性的关键步骤。Jest 作为由 Facebook 开发和维护的功能强大的 JavaScript 测试框架,以其易于配置、丰富的功能和开箱即用的特性,成为众多开发者的首选工具。本文旨在引导你从零开始&am…...

【Java Web】Axios实现前后端数据异步交互
目录 一、Promise概述 二、Promise基本用法 三、async和await关键字 四、Axios介绍 4.1 Axios基本用法 4.2 Axios简化用法之get和post方法 五、Axios拦截器 六、跨域问题处理 一、Promise概述 axios是代替原生的ajax实现前后端数据交互的一套新解决方案,而…...

React 第十七节 useMemo用法详解
概述 useMemo 是React 中的一个HOOK,用于根据依赖在每次渲染时候缓存计算结果; 大白话就是,只有依赖项发生变化时候,才会重新渲染为新计算的值,否则就还是取原来的值,有点类似 vue 中的 computed 计算属性…...

鸿蒙项目云捐助第十五讲云数据库的初步使用
鸿蒙项目云捐助第十五讲云数据库的初步使用 在华为云技术使用中,前面使用了云函数,接下来看一下华为云技术中的另外一个技术云数据库的使用。 一、云数据库的创建 这里使用华为云数据库也需要登录到AppGallery Connect平台中,点击进入到之…...

如何构建一个可信的联邦RAG系统。
今天给大家分享一篇论文。 题目是:C-RAG:如何构建一个可信的联邦检索RAG系统。 论文链接:https://arxiv.org/abs/2412.13163 论文概述 尽管大型语言模型 (LLM) 在各种应用中展现出令人印象深刻的能力,但它们仍然存在可信度问题ÿ…...

【深度学习之三】FPN与PAN网络详解
FPN与PAN:深度学习中的特征金字塔网络与路径聚合网络 在深度学习的领域里,特征金字塔网络(Feature Pyramid Networks,简称FPN) 和 路径聚合网络(Path Aggregation Network,简称PAN)…...

Qt学习笔记第71到80讲
第71讲 事件过滤器的方式实现滚轮按键放大 事件体系(事件派发 -> 事件过滤->事件分发->事件处理)中,程序员主要操作的是事件分发与事件处理。我们之前已经通过继承QTextEdit来重写事件实现Ctrl加滚轮的检测,还有一种处理…...

以管理员身份运行
同时按下Ctrl Shift Esc键打开任务管理器,在任务管理器的左上角,点击“文件”菜单,在下拉菜单中选择“新建任务” 在弹出的对话框中,输入您想要运行的程序的名称。如果您不确定程序的确切名称,可以点击“浏览”来找到…...

用 Python 实现井字棋游戏
一、引言 井字棋(Tic-Tac-Toe)是一款经典的两人棋类游戏。在这个游戏中,玩家轮流在 3x3 的棋盘上放置自己的标记,通常是 “X” 和 “O”,第一个在棋盘上连成一线(横、竖或斜)的玩家即为获胜者。…...

06 实现自定义AXI DMA驱动
为什么要实现自定义AXI DMA驱动 ZYNQ 的 AXI DMA 在 Direct Register DMA (即 Simple DMA)模式下可以通过 AXIS 总线的 tlast 提前结束传输,同时还可以在 BUFFLEN 寄存器中读取到实际传输的字节数,但是通过 Linux 的 DMA 驱动框架…...

SpringBoot集成ENC对配置文件进行加密
在线MD5生成工具 配置文件加密,集成ENC 引入POM依赖 <!-- ENC配置文件加密 --><dependency><groupId>com.github.ulisesbocchio</groupId><artifactId>jasypt-spring-boot-starter</artifactId><version>2.1.2</ver…...

初学stm32 ——— 串口通信
目录 STM32的串口通信接口 UART异步通信方式特点: 串口通信过程 STM32串口异步通信需要定义的参数: USART框图: 常用的串口相关寄存器 串口操作相关库函数 编辑 串口配置的一般步骤 STM32的串口通信接口 UART:通用异步收发器USART&am…...

qwt 多Y轴 项目效果
项目场景: 在做一个半导体上位机软件项目实践中,需要做一个曲线展示和分析界面,上位机主题是用qt框架来开发,考虑到目前qt框架的两种图标库,一个是qcustomplot 一个是 qwt。之所以采用qwt ,根本原因是因为…...

Java中通过ArrayList扩展数组
在Java中,ArrayList 是一个动态数组实现,能够根据需要自动调整其大小。与传统的数组不同,ArrayList 不需要预先指定大小,并且提供了许多方便的方法来操作集合中的元素。下面将详细介绍如何使用 ArrayList 进行数组的扩展ÿ…...

Java:链接redis报错:NoSuchElementException: Unable to validate object
目录 前言报错信息排查1、确认redis密码设置是否有效2、确认程序配置文件,是否配置了正确的redis登录密码3、检测是否是redis持久化的问题4、确认程序读取到的redis密码没有乱码 原因解决 前言 一个已经上线的项目,生产环境的redis居然没有设置密码&…...