当前位置: 首页 > news >正文

源码编译llama.cpp for android

源码编译llama.cpp for android

我这有已经编译好的版本,直接下载使用:

https://github.com/turingevo/llama.cpp-build/releases/tag/b4331

准备 android-ndk

已下载:

/media/wmx/ws1/software/qtAndroid/Sdk/ndk/23.1.7779620

版本 : llama.cpp-b4331
下载源码
切换到 llama.cpp/目录

编译脚本 llama.cpp/build-android.sh


#!/bin/bashANDROID_NDK_PATH=/media/wmx/ws1/software/qtAndroid/Sdk/ndk/23.1.7779620
build_dir=build-android
src_dir=.
install_dir=bin/androidcmake \-DCMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_PATH}/build/cmake/android.toolchain.cmake \-DANDROID_ABI=arm64-v8a \-DANDROID_PLATFORM=android-28 \-DCMAKE_C_FLAGS="-march=armv8.7a" \-DCMAKE_CXX_FLAGS="-march=armv8.7a" \-DGGML_OPENMP=OFF \-DGGML_LLAMAFILE=OFF \-B ${build_dir} \-S ${src_dir}cmake --build ${build_dir} --config Release -j48cmake --install ${build_dir} --prefix ${install_dir} --config Release

push 到android设备测试

下面是 华为mate40pro 上的测试结果

build llama.cpp/bin/android


adb shell "mkdir /data/local/tmp/llama.cpp"
adb push bin/android /data/local/tmp/llama.cpp/
adb push qwen2.5-0.5b-instruct-q4_k_m.gguf /data/local/tmp/llama.cpp/adb shell
cd /data/local/tmp/llama.cpp/androidtouch test.sh
chmod a+x test.sh
cat " LD_LIBRARY_PATH=lib ./bin/llama-simple -m qwen2.5-0.5b-instruct-q4_k_m.gguf -p \"你是谁?\"  "  > test.sh./test.shHWNOH:/data/local/tmp/llama.cpp/android $ ./test.sh                                                                                           
llama_model_loader: loaded meta data with 26 key-value pairs and 291 tensors from /sdcard/a-wmx/models/qwen2.5-0.5b-instruct-q4_k_m.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen2
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = qwen2.5-0.5b-instruct
llama_model_loader: - kv   3:                            general.version str              = v0.1
llama_model_loader: - kv   4:                           general.finetune str              = qwen2.5-0.5b-instruct
llama_model_loader: - kv   5:                         general.size_label str              = 630M
llama_model_loader: - kv   6:                          qwen2.block_count u32              = 24
llama_model_loader: - kv   7:                       qwen2.context_length u32              = 32768
llama_model_loader: - kv   8:                     qwen2.embedding_length u32              = 896
llama_model_loader: - kv   9:                  qwen2.feed_forward_length u32              = 4864
llama_model_loader: - kv  10:                 qwen2.attention.head_count u32              = 14
llama_model_loader: - kv  11:              qwen2.attention.head_count_kv u32              = 2
llama_model_loader: - kv  12:                       qwen2.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  13:     qwen2.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  14:                          general.file_type u32              = 15
llama_model_loader: - kv  15:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  16:                         tokenizer.ggml.pre str              = qwen2
llama_model_loader: - kv  17:                      tokenizer.ggml.tokens arr[str,151936]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  18:                  tokenizer.ggml.token_type arr[i32,151936]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  19:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  20:                tokenizer.ggml.eos_token_id u32              = 151645
llama_model_loader: - kv  21:            tokenizer.ggml.padding_token_id u32              = 151643
llama_model_loader: - kv  22:                tokenizer.ggml.bos_token_id u32              = 151643
llama_model_loader: - kv  23:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  24:                    tokenizer.chat_template str              = {%- if tools %}\n    {{- '<|im_start|>...
llama_model_loader: - kv  25:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:  121 tensors
llama_model_loader: - type q5_0:  133 tensors
llama_model_loader: - type q8_0:   13 tensors
llama_model_loader: - type q4_K:   12 tensors
llama_model_loader: - type q6_K:   12 tensors
llm_load_vocab: control token: 151659 '<|fim_prefix|>' is not marked as EOG
llm_load_vocab: control token: 151656 '<|video_pad|>' is not marked as EOG
llm_load_vocab: control token: 151655 '<|image_pad|>' is not marked as EOG
llm_load_vocab: control token: 151653 '<|vision_end|>' is not marked as EOG
llm_load_vocab: control token: 151652 '<|vision_start|>' is not marked as EOG
llm_load_vocab: control token: 151651 '<|quad_end|>' is not marked as EOG
llm_load_vocab: control token: 151649 '<|box_end|>' is not marked as EOG
llm_load_vocab: control token: 151648 '<|box_start|>' is not marked as EOG
llm_load_vocab: control token: 151646 '<|object_ref_start|>' is not marked as EOG
llm_load_vocab: control token: 151644 '<|im_start|>' is not marked as EOG
llm_load_vocab: control token: 151661 '<|fim_suffix|>' is not marked as EOG
llm_load_vocab: control token: 151647 '<|object_ref_end|>' is not marked as EOG
llm_load_vocab: control token: 151660 '<|fim_middle|>' is not marked as EOG
llm_load_vocab: control token: 151654 '<|vision_pad|>' is not marked as EOG
llm_load_vocab: control token: 151650 '<|quad_start|>' is not marked as EOG
llm_load_vocab: special tokens cache size = 22
llm_load_vocab: token to piece cache size = 0.9310 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = qwen2
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 151936
llm_load_print_meta: n_merges         = 151387
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 32768
llm_load_print_meta: n_embd           = 896
llm_load_print_meta: n_layer          = 24
llm_load_print_meta: n_head           = 14
llm_load_print_meta: n_head_kv        = 2
llm_load_print_meta: n_rot            = 64
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 64
llm_load_print_meta: n_embd_head_v    = 64
llm_load_print_meta: n_gqa            = 7
llm_load_print_meta: n_embd_k_gqa     = 128
llm_load_print_meta: n_embd_v_gqa     = 128
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-06
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 4864
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 2
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 32768
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = 1B
llm_load_print_meta: model ftype      = Q4_K - Medium
llm_load_print_meta: model params     = 630.17 M
llm_load_print_meta: model size       = 462.96 MiB (6.16 BPW) 
llm_load_print_meta: general.name     = qwen2.5-0.5b-instruct
llm_load_print_meta: BOS token        = 151643 '<|endoftext|>'
llm_load_print_meta: EOS token        = 151645 '<|im_end|>'
llm_load_print_meta: EOT token        = 151645 '<|im_end|>'
llm_load_print_meta: PAD token        = 151643 '<|endoftext|>'
llm_load_print_meta: LF token         = 148848 'ÄĬ'
llm_load_print_meta: FIM PRE token    = 151659 '<|fim_prefix|>'
llm_load_print_meta: FIM SUF token    = 151661 '<|fim_suffix|>'
llm_load_print_meta: FIM MID token    = 151660 '<|fim_middle|>'
llm_load_print_meta: FIM PAD token    = 151662 '<|fim_pad|>'
llm_load_print_meta: FIM REP token    = 151663 '<|repo_name|>'
llm_load_print_meta: FIM SEP token    = 151664 '<|file_sep|>'
llm_load_print_meta: EOG token        = 151643 '<|endoftext|>'
llm_load_print_meta: EOG token        = 151645 '<|im_end|>'
llm_load_print_meta: EOG token        = 151662 '<|fim_pad|>'
llm_load_print_meta: EOG token        = 151663 '<|repo_name|>'
llm_load_print_meta: EOG token        = 151664 '<|file_sep|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: tensor 'token_embd.weight' (q5_0) (and 290 others) cannot be used with preferred buffer type CPU_AARCH64, using CPU instead
llm_load_tensors:   CPU_Mapped model buffer size =   462.96 MiB
.....................................................
llama_new_context_with_model: n_batch is less than GGML_KQ_MASK_PAD - increasing to 32
llama_new_context_with_model: n_seq_max     = 1
llama_new_context_with_model: n_ctx         = 64
llama_new_context_with_model: n_ctx_per_seq = 64
llama_new_context_with_model: n_batch       = 32
llama_new_context_with_model: n_ubatch      = 32
llama_new_context_with_model: flash_attn    = 0
llama_new_context_with_model: freq_base     = 1000000.0
llama_new_context_with_model: freq_scale    = 1
llama_new_context_with_model: n_ctx_per_seq (64) < n_ctx_train (32768) -- the full capacity of the model will not be utilized
llama_kv_cache_init:        CPU KV buffer size =     0.75 MiB
llama_new_context_with_model: KV self size  =    0.75 MiB, K (f16):    0.38 MiB, V (f16):    0.38 MiB
llama_new_context_with_model:        CPU  output buffer size =     0.58 MiB
llama_new_context_with_model:        CPU compute buffer size =    18.66 MiB
llama_new_context_with_model: graph nodes  = 846
llama_new_context_with_model: graph splits = 1
-p 你是谁?我是阿里云开发的超大规模语言模型,我叫通义千问。通义是“通义天下”,千问是“千问天下
main: decoded 32 tokens in 2.21 s, speed: 14.49 t/sllama_perf_sampler_print:    sampling time =       5.69 ms /    32 runs   (    0.18 ms per token,  5622.91 tokens per second)
llama_perf_context_print:        load time =    1907.15 ms
llama_perf_context_print: prompt eval time =     165.11 ms /     5 tokens (   33.02 ms per token,    30.28 tokens per second)
llama_perf_context_print:        eval time =    2000.08 ms /    31 runs   (   64.52 ms per token,    15.50 tokens per second)
llama_perf_context_print:       total time =    3950.19 ms /    36 tokens

相关文章:

源码编译llama.cpp for android

源码编译llama.cpp for android 我这有已经编译好的版本&#xff0c;直接下载使用&#xff1a; https://github.com/turingevo/llama.cpp-build/releases/tag/b4331 准备 android-ndk 已下载&#xff1a; /media/wmx/ws1/software/qtAndroid/Sdk/ndk/23.1.7779620版本 &am…...

StarRocks 排查单副本表

文章目录 StarRocks 排查单副本表方式1 查询元数据&#xff0c;检查分区级的副本数方式2 SHOW PARTITIONS命令查看 ReplicationNum修改副本数命令 StarRocks 排查单副本表 方式1 查询元数据&#xff0c;检查分区级的副本数 # 方式一 查询元数据&#xff0c;检查分区级的副本数…...

Windows11 家庭版安装配置 Docker

1. 安装WSL WSL 是什么&#xff1a; WSL 是一个在 Windows 上运行 Linux 环境的轻量级工具&#xff0c;它可以让用户在 Windows 系统中运行 Linux 工具和应用程序。Docker 为什么需要 WSL&#xff1a; Docker 依赖 Linux 内核功能&#xff0c;WSL 2 提供了一个高性能、轻量级的…...

线程知识总结(二)

本篇文章以线程同步的相关内容为主。线程的同步机制主要用来解决线程安全问题&#xff0c;主要方式有同步代码块、同步方法等。首先来了解何为线程安全问题。 1、线程安全问题 卖票示例&#xff0c;4 个窗口卖 100 张票&#xff1a; class Ticket implements Runnable {priv…...

解决vscode ssh远程连接服务器一直卡在下载 vscode server问题

目录 方法1&#xff1a;使用科学上网 方法2&#xff1a;手动下载 方法3 在使用vscode使用ssh远程连接服务器时&#xff0c;一直卡在下载"vscode 服务器"阶段&#xff0c;但MobaXterm可以正常连接服务器&#xff0c;大概率是网络问题&#xff0c;解决方法如下: 方…...

【Cadence射频仿真学习笔记】IC设计中电感的分析、建模与绘制(EMX电磁仿真,RFIC-GPT生成无源器件及与cadence的交互)

一、理论讲解 1. 电感设计的两个角度 电感的设计可以从两个角度考虑&#xff0c;一个是外部特性&#xff0c;一个是内部特性。外部特性就是把电感视为一个黑盒子&#xff0c;带有两个端子&#xff0c;如果带有抽头的电感就有三个端子&#xff0c;需要去考虑其电感值、Q值和自…...

Definition of Done

Definition of Done English Version The team agrees on, a checklist of criteria which must be met before a product increment “often a user story” is considered “done”. Failure to meet these criteria at the end of a sprint normally implies that the work …...

【漏洞复现】CVE-2023-37461 Arbitrary File Writing

漏洞信息 NVD - cve-2023-37461 Metersphere is an opensource testing framework. Files uploaded to Metersphere may define a belongType value with a relative path like ../../../../ which may cause metersphere to attempt to overwrite an existing file in the d…...

简单工厂模式和策略模式的异同

文章目录 简单工厂模式和策略模式的异同相同点&#xff1a;不同点&#xff1a;目的&#xff1a;结构&#xff1a; C 代码示例简单工厂模式示例&#xff08;以创建图形对象为例&#xff09;策略模式示例&#xff08;以计算价格折扣策略为例&#xff09;UML区别 简单工厂模式和策…...

HuggingFace datasets - 下载数据

文章目录 下载数据修改默认保存地址 TRANSFORMERS_CACHE保存到本地 & 本地加载保存加载 读取 .arrow 数据 下载数据 1、Python 代码下载 from datasets import load_dataset imdb load_dataset("imdb") # name参数为full或mini&#xff0c;full表示下载全部数…...

梯度(Gradient)和 雅各比矩阵(Jacobian Matrix)的区别和联系:中英双语

雅各比矩阵与梯度&#xff1a;区别与联系 在数学与机器学习中&#xff0c;梯度&#xff08;Gradient&#xff09; 和 雅各比矩阵&#xff08;Jacobian Matrix&#xff09; 是两个核心概念。虽然它们都描述了函数的变化率&#xff0c;但应用场景和具体形式有所不同。本文将通过…...

Vscode搭建C语言多文件开发环境

一、文章内容简介 本文介绍了 “Vscode搭建C语言多文件开发环境”需要用到的软件&#xff0c;以及vscode必备插件&#xff0c;最后多文件编译时tasks.json文件和launch.json文件的配置。即目录顺序。由于内容较多&#xff0c;建议大家在阅读时使用电脑阅读&#xff0c;按照目录…...

自定义 C++ 编译器的调用与管理

在 C 项目中&#xff0c;常常需要自动化地管理编译流程&#xff0c;例如使用 MinGW 或 Visual Studio 编译器进行代码的编译和链接。为了方便管理不同编译器和简化编译流程&#xff0c;我们开发了一个 CompilerManager 类&#xff0c;用于抽象编译器的查找、命令生成以及执行。…...

时间管理系统|Java|SSM|JSP|

【技术栈】 1⃣️&#xff1a;架构: B/S、MVC 2⃣️&#xff1a;系统环境&#xff1a;Windowsh/Mac 3⃣️&#xff1a;开发环境&#xff1a;IDEA、JDK1.8、Maven、Mysql5.7 4⃣️&#xff1a;技术栈&#xff1a;Java、Mysql、SSM、Mybatis-Plus、JSP、jquery,html 5⃣️数据库可…...

用SparkSQL和PySpark完成按时间字段顺序将字符串字段中的值组合在一起分组显示

用SparkSQL和PySpark完成以下数据转换。 源数据&#xff1a; userid,page_name,visit_time 1,A,2021-2-1 2,B,2024-1-1 1,C,2020-5-4 2,D,2028-9-1 目的数据&#xff1a; user_id,page_name_path 1,C->A 2,B->D PySpark&#xff1a; from pyspark.sql import SparkSes…...

Sentinel 学习笔记3-责任链与工作流程

本文属于sentinel学习笔记系列。网上看到吴就业老师的专栏&#xff0c;原文地址如下&#xff1a; https://blog.csdn.net/baidu_28523317/category_10400605.html 上一篇梳理了概念与核心类&#xff1a;Sentinel 学习笔记2- 概念与核心类介绍-CSDN博客 补一个点&#xff1a;…...

Latex 转换为 Word(使用GrindEQ )(英文转中文,毕业论文)

效果预览 第一步&#xff1a; 告诉chatgpt&#xff1a; 将latex格式中的英文翻译为中文&#xff08;符号和公式不要动&#xff09;,给出latex格式第二步&#xff1a; Latex 转换为 Word&#xff08;使用GrindEQ &#xff09; 视频 https://www.bilibili.com/video/BV1f242…...

使用Chat-LangChain模块创建一个与用户交流的机器人

当然&#xff01;要使用Chat-LangChain模块创建一个与用户交流的机器人&#xff0c;你需要安装并配置一些Python库。以下是一个基本的步骤指南和示例代码&#xff0c;帮助你快速上手。 安装依赖库 首先&#xff0c;你需要安装langchain库&#xff0c;它是一个高级框架&#x…...

国家认可的人工智能从业人员证书如何报考?

一、证书出台背景 为进一步贯彻落实中共中央印发《关于深化人才发展体制机制改革的意见》和国务院印发《关于“十四五”数字经济发展规划》等有关工作的部署要求&#xff0c;深入实施人才强国战略和创新驱动发展战略&#xff0c;加强全国数字化人才队伍建设&#xff0c;持续推…...

【网络云计算】2024第51周-每日【2024/12/17】小测-理论-解析

文章目录 1. 计算机网络有哪些分类2. 计算机网络中协议与标准的区别3. 计算机网络拓扑有哪些结构4. 常用的网络设备有哪些&#xff0c;分属于OSI的哪一层5. IEEE802局域网标准有哪些 【网络云计算】2024第51周-每日【2024/12/17】小测-理论-解析 1. 计算机网络有哪些分类 计算…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中&#xff0c;理解API&#xff08;应用程序接口&#xff09;和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能&#xff0c;使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...