当前位置: 首页 > news >正文

【jvm】主要参数

Java 虚拟机(JVM)有许多参数用于控制其行为和性能,下面是一些 主要的 JVM 启动参数,这些参数通常分为以下几类:

  1. 内存管理相关参数
    这些参数主要用来配置 JVM 的内存分配策略、堆内存、栈内存等。

-Xms
设置 JVM 启动时堆的初始内存大小(单位:字节、KB、MB、GB)。例如 -Xms512m 表示堆的初始大小为 512MB。

-Xmx
设置堆的最大内存大小(单位:字节、KB、MB、GB)。例如 -Xmx1024m 表示堆的最大大小为 1024MB。

java -XX:+PrintFlagsFinal -version | grep HeapSize

-Xmn
设置年轻代(Young Generation)的大小。年轻代内存用于存储新创建的对象。这个参数通常与 -Xmx 和 -Xms 配合使用。

-XX:NewSize= 和 -XX:MaxNewSize=
分别设置新生代(Young Generation)的初始大小和最大大小。

-XX:SurvivorRatio=
设置年轻代中 Eden 区和 Survivor 区的大小比率。默认是 8,意味着 Eden 区是 Survivor 区的 8 倍大小。

-XX:PermSize= 和 -XX:MaxPermSize=
设置永久代(PermGen)的初始大小和最大大小(JDK 8 后被 Metaspace 取代)。例如 -XX:MaxPermSize=256m。

-XX:MetaspaceSize= 和 -XX:MaxMetaspaceSize=
设置 Metaspace 的初始大小和最大大小(在 JDK 8 中,PermGen 被 Metaspace 替代)。

-XX:+UseG1GC
启用 G1 垃圾回收器。G1 是一种低延迟的垃圾回收器,适用于需要大堆并且需要低延迟的应用程序。

  1. 垃圾回收相关参数
    这些参数用于控制 JVM 中垃圾回收的行为。

-XX:+UseSerialGC
启用串行垃圾回收器(适合单线程环境)。

-XX:+UseParallelGC
启用并行垃圾回收器(适合多线程环境,提升吞吐量)。

-XX:+UseConcMarkSweepGC
启用并发标记清除垃圾回收器(CMS)。适用于对延迟敏感的应用。

-XX:+UseG1GC
启用 G1 垃圾回收器,适用于大堆内存和低延迟要求的应用。

-XX:MaxGCPauseMillis=

  1. 性能优化相关参数
    这些参数用于控制 JVM 性能优化策略。

-XX:+AggressiveOpts
启用一些潜在的性能优化(例如,启用 JIT 编译器的高级优化)。

-XX:CompileThreshold=
设置 JIT 编译器编译方法的调用次数阈值,超过此次数后将进行方法的即时编译。

-XX:+UseCompressedOops
启用压缩对象指针(Object Pointers)。对于 64 位 JVM,开启该选项可以节省内存。

-XX:MaxInlineLevel=
设置 JIT 编译器最大内联方法的深度,影响方法内联的优化。

  1. 调试与日志参数
    这些参数主要用于启用调试模式或记录 JVM 的运行日志。

-Xdebug
启用 JVM 调试。

-Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=5005
启用远程调试,address=5005 表示调试端口,suspend=n 表示不在启动时暂停。

-XX:+PrintGCDetails
打印垃圾回收的详细信息。

-XX:+PrintGCDateStamps
打印垃圾回收时的时间戳。

-XX:+PrintHeapAtGC
打印每次垃圾回收时堆内存的详细信息。

  1. JVM 其他常用参数
    -server
    启动服务器模式的 JVM,通常用于生产环境,优化了运行性能。

-client
启动客户端模式的 JVM,通常用于开发和测试环境,优化了启动时间。

-XX:+DisableExplicitGC
禁用 System.gc() 显式垃圾回收调用。

-XX:CICompilerCount=
设置 JIT 编译器的线程数。

  1. Java 版本相关参数
    -version
    输出当前 JVM 的版本信息。

-classpath 或 -cp
设置类路径。该参数指定 Java 程序查找类的路径。

-D=
设置 Java 系统属性。例如 -Dfile.encoding=UTF-8 设置文件编码为 UTF-8。

总结:
这些 JVM 启动参数允许开发人员根据应用程序的需求调整内存分配、垃圾回收策略、性能优化、调试选项等。适当的配置可以显著提高应用程序的性能和稳定性。

相关文章:

【jvm】主要参数

Java 虚拟机(JVM)有许多参数用于控制其行为和性能,下面是一些 主要的 JVM 启动参数,这些参数通常分为以下几类: 内存管理相关参数 这些参数主要用来配置 JVM 的内存分配策略、堆内存、栈内存等。 -Xms 设置 JVM 启动…...

【优选算法】—移动零(双指针算法)

云边有个稻草人-CSDN博客 想当一名牛的程序员怎么能少的了练习算法呢?! 今天就立即开启一个新专栏,专干算法,提高算法能力(废柴的我也在准备蓝桥杯哈哈)—— 目录 1.【 283. 移动零 - 力扣(Lee…...

PostgreSQL标识符长度限制不能超过63字节

文章目录 问题:标识符太长会被截断分析相关源码可以尝试以下案例 问题:标识符太长会被截断 在创建表时,发现表名太长会自动被截断,导致查询表时报错了。 分析 参考:https://www.postgresql.org/docs/current/limits…...

嵌入式硬件面试题

1、请问什么是通孔、盲孔和埋孔?孔径多大可以做机械孔,孔径多小必须做激光孔?请问激光微型孔可以直接打在元件焊盘上吗,为什么? 通孔是贯穿整个PCB的过孔,盲孔是从PCB表层连接到内层的过孔,埋孔…...

深度解析 OneCode 混合编译:创新驱动的开发变革

前言 在软件开发领域,不断追求高效、灵活与强大的开发模式是永恒的主题。OneCode 作为一款引领潮流的开发工具,其混合编译特性正逐渐成为开发界瞩目的焦点。本文将深入剖析 OneCode 的混合编译机制,揭示它如何为软件开发带来前所未有的变革与…...

[文献阅读] Unsupervised Deep Embedding for Clustering Analysis (无监督的深度嵌入式聚类)

文章目录 Abstract:摘要聚类深度聚类 KL散度深度嵌入式聚类(DEC)KL散度聚类软分配(soft assignment)KL散度损失训练编码器的初始化聚类中心的初始化 实验评估总结 Abstract: This week I read Unsupervised Deep Embedding for Clustering Analysis .It…...

ajax中get和post的区别,datatype返回的数据类型有哪些?web开发中数据提交的几种方式,有什么区别。

在 Web 开发中,GET 和 POST 是两种常见的 HTTP 请求方法,它们有一些显著的区别。此外,datatype 参数在 jQuery 的 ajax() 请求中指定了预期的响应数据类型。接下来,我会详细解释这些问题。 1. GET 和 POST 请求的区别 GET 请求 和…...

网络七层杀伤链

声明! 学习视频来自B站up主 **泷羽sec** 有兴趣的师傅可以关注一下,如涉及侵权马上删除文章,笔记只是方便各位师傅的学习和探讨,文章所提到的网站以及内容,只做学习交流,其他均与本人以及泷羽sec团队无关&…...

GAN网络详解及涨点大全总结(源码)

(需要源码请私信或评论) GAN原理 GAN的基本原理建立在 生成模型和判别模型的博弈过程 上。这种独特的机制使得GAN能够在复杂的分布上实现高效的无监督学习。在这个过程中,生成器G和判别器D相互竞争,最终达到一种平衡状态,在此状态下,G能够产生高质量的合成样本,而D则无…...

【自动化】Python SeleniumUtil 工具 开启开发者模式 自动安装油猴用户脚本等

【自动化】Python SeleniumUtil 工具 【Python】使用Selenium 操作浏览器 自动化测试 记录-CSDN博客文章浏览阅读58次。文章浏览阅读42次。【附件】Selenium chromedriver 驱动及浏览器下载。【附件】Selenium chromedriver 驱动及浏览器下载-CSDN博客。3.安装Chrome浏览器驱动…...

【Linux打怪升级记 | 问题01】安装Linux系统忘记设置时区怎么办?3个方法教你回到东八区

🗺️博客地图 📍方法一、timedatectl 命令 📍方法二、手动链接 /etc/localtime 📍方法三、修改时区变量 在 Linux 系统中,可以通过以下3种方式将系统时区修改为 CST(中国标准时间,GMT8 或称 …...

android:sharedUserId 应用进程声明介绍

背景 adb install 安装系统软件报错,原因是签名不一致,进程改变。 代码分析 AndroidManifest.xml 定义的 android:sharedUserId 应用归属进程不同,从phone切换到system。 初始配置 <manifest xmlns:android="http://schemas.android.com/apk/res/android"c…...

解锁ApplicationContext vs BeanFactory: 谁更具选择性?

目录 一、聚焦源码回顾 &#xff08;一&#xff09;源码分析和理解 &#xff08;二&#xff09;简短的回顾对比建议 二、ApplicationContext vs BeanFactory特性对比 &#xff08;一&#xff09;主要特性总结 &#xff08;二&#xff09;直接建议 三、案例简单说明 &am…...

一篇梳理清楚http请求知识点

HTTP请求是Web开发中的重要组成部分&#xff0c;它涉及到客户端和服务器之间的通信。掌握HTTP请求的知识点对于前端开发和后端开发都至关重要。以下是关于HTTP请求的详细梳理&#xff0c;结合代码进行说明。 1. HTTP请求概述 HTTP&#xff08;超文本传输协议&#xff09;是一个…...

Kotlin - 协程结构化并发Structured Concurrency

前言 Kotlin的Project Lead&#xff0c;Roman Elizarov的一片文章https://elizarov.medium.com/structured-concurrency-722d765aa952介绍了Structured Concurrency发展的背景。相对Kotlin1.1时代&#xff0c;后来新增的Structured Concurrency理念&#xff0c;也就是我们现在所…...

新版国标GB28181设备端Android版EasyGBD支持国标GB28181-2022,支持语音对讲,支持位置上报,开源在Github

经过近3个月的迭代开发&#xff0c;新版本的国标GB28181设备端EasyGBD安卓Android版终于在昨天发布到Github了&#xff0c;最新的EasyGBD支持了国标GB28181-2022版&#xff0c;还支持了语音对讲、位置上报、本地录像等功能&#xff0c;比原有GB28181-2016版的EasyGBD更加高效、…...

豆包MarsCode测评:编程效率再提升

豆包MarsCode测评&#xff1a;编程效率再提升 本文正在参与豆包MarsCode AI 编程体验家活动 随着人工智能技术的发展&#xff0c;编程的方式也在悄然发生变化。最近&#xff0c;豆包推出的 AI 编程工具 MarsCode 在开发者社区引发了不小的关注。这是一款支持多种主流编程语言…...

二叉树 -- 堆(详解)

目录 1、堆的概念及结构 2、堆的实现(附代码) 2.1、向下调整算法建堆 3、堆的应用(附代码) 3.1、堆排序 3.2、TOP-K问题 1、堆的概念及结构 如果有一个关键码的集合K { k0&#xff0c;k1 &#xff0c;k2 &#xff0c;…&#xff0c;k(n-1) }&#xff0c;把它的所有元素…...

【Apache Paimon】-- 11 -- Flink 消费 kakfa 写 S3 File

目录 1、项目构建 2、项目新增和修改 2.1 pom.xml 新增依赖 2.2 本地测试或者 flink on k8s 时,新增 S3FileSystemFactory.java 第一步:创建包=org.apache.flink.fs.s3hadoop 第二步:新增 java 类 S3FileSystemFactory 特别注意 (1)本地测试时需要新增以下内容 (…...

SQL MID()

SQL中的MID()函数是一个用于从指定位置开始截取字符串中指定长度的子串的函数。这个函数在数据库查询和数据处理中经常被使用&#xff0c;特别是在需要从较长的文本字段中提取特定信息时。 MID()函数的基本语法是&#xff1a;SELECT MID(column_name, start, length) FROM tab…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...

在 Spring Boot 中使用 JSP

jsp&#xff1f; 好多年没用了。重新整一下 还费了点时间&#xff0c;记录一下。 项目结构&#xff1a; pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...

【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权

摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题&#xff1a;安全。文章将详细阐述认证&#xff08;Authentication) 与授权&#xff08;Authorization的核心概念&#xff0c;对比传统 Session-Cookie 与现代 JWT&#xff08;JS…...