当前位置: 首页 > news >正文

LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测

LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测

目录

    • LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测(完整源码和数据);
2.数据集为excel,单列时间序列数据集,运行主程序main.m即可,其余为函数文件,无需运行;
3.优化参数为神经网络的权值和偏置,命令窗口输出RMSE、MAPE、MAE、R2等评价指标;
4.运行环境Matlab2023b及以上;
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整源码和数据获取方式私信博主回复LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 4;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测%%  划分数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);[t_train, ps_output] = mapminmax(T_train,0,1);
t_test = mapminmax('apply',T_test,ps_output);%% 节点个数
inputnum  = size(p_train, 1); % 输入层节点数
hiddennum = 15;                % 隐藏层节点数
outputnum = size(t_train, 1); % 输出层节点数
% CSDN 机器学习之心

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测

LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测 目录 LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.LSTM-SVM时序预测 | Matlab基于LSTM…...

MacPorts 中安装高/低版本软件方式,以 RabbitMQ 为例

查询信息 这里以 RabbitMQ 为例,通过搜索得到默认安装版本信息: port search rabbitmq-server结果 ~/Downloads> port search rabbitmq-server rabbitmq-server 3.11.15 (net)The RabbitMQ AMQP Server ~/Downloads>获取二进制文件 但当前官网…...

CVPR2024 | 通过集成渐近正态分布学习实现强可迁移对抗攻击

Strong Transferable Adversarial Attacks via Ensembled Asymptotically Normal Distribution Learning 摘要-Abstract引言-Introduction相关工作及前期准备-Related Work and Preliminaries1. 黑盒对抗攻击2. SGD的渐近正态性 提出的方法-Proposed Method随机 BIM 的渐近正态…...

建投数据与腾讯云数据库TDSQL完成产品兼容性互认证

近日,经与腾讯云联合测试,建投数据自主研发的人力资源信息管理系统V3.0、招聘管理系统V3.0、绩效管理系统V2.0、培训管理系统V3.0通过腾讯云数据库TDSQL的技术认证,符合腾讯企业标准的要求,产品兼容性良好,性能卓越。 …...

群晖利用acme.sh自动申请证书并且自动重载证书的问题解决

前言 21年的时候写了一个在群晖(黑群晖)下利用acme.sh自动申请Let‘s Encrypt的脚本工具 群晖使用acme自动申请Let‘s Encrypt证书脚本,自动申请虽然解决了,但是自动重载一直是一个问题,本人也懒,一想到去…...

质量小议51 - 茧房

茧房:茧房是指蚕茧所建的住所或空间,由一个蚕丝囊完全包裹住的一个密封的空间。 -- CSDN创作助手 信息茧房 - 指通过互联网和数字技术,将个人封闭在一个虚拟的信息环境中,使其只接收来自特定渠道的信息,而屏蔽其他信息…...

【C++图论】2359. 找到离给定两个节点最近的节点|1714

本文涉及知识点 C图论 打开打包代码的方法兼述单元测试 LeetCode2359. 找到离给定两个节点最近的节点 给你一个 n 个节点的 有向图 ,节点编号为 0 到 n - 1 ,每个节点 至多 有一条出边。 有向图用大小为 n 下标从 0 开始的数组 edges 表示&#xff0c…...

重拾设计模式-外观模式和适配器模式的异同

文章目录 目的不同适配器模式:外观模式: 结构和实现方式不同适配器模式:外观模式: 对客户端的影响不同适配器模式:外观模式: 目的不同 适配器模式: 主要目的是解决两个接口不兼容的问题&#…...

51c自动驾驶~合集42

我自己的原文哦~ https://blog.51cto.com/whaosoft/12888355 #DriveMM 六大数据集全部SOTA!最新DriveMM:自动驾驶一体化多模态大模型(美团&中山大学) 近年来,视觉-语言数据和模型在自动驾驶领域引起了广泛关注…...

34 Opencv 自定义角点检测

文章目录 cornerEigenValsAndVecscornerMinEigenVal示例 cornerEigenValsAndVecs void cornerEigenValsAndVecs(InputArray src, --单通道输入8位或浮点图像OutputArray dst, --输出图像,同源图像或CV_32FC(6)int blockSize, --邻域大小值int ape…...

信创技术栈发展现状与展望:机遇与挑战并存

一、引言 在信息技术应用创新(信创)战略稳步推进的大背景下,我国信创技术栈已然在诸多关键层面收获了亮眼成果,不过也无可避免地遭遇了一系列亟待攻克的挑战。信创产业作为我国达成信息技术自主可控这一目标的关键一招&#xff0c…...

跟我学c++中级篇——C++中的缓存利用

一、缓存 学习过计算机知识的一般都知道缓存这个概念,大约也知道缓存是什么。但是如果是程序员,如何更好的利用缓存,可能就有很多人不太清楚了。其实缓存的目的非常简单,就是了更高效的操作数据。大家都听说过“局部性原理”&…...

二叉树_堆

目录 一. 树(非线性结构) 1.1 树的概念与结构 1.2 树的表示 二. 二叉树 2.1 二叉树的概念与结构 2.2 特殊的二叉树 2.3 二叉树的存储结构 三. 实现顺序结构的二叉树 3.1 堆的概念与结构 一. 树(非线性结构) 1.1 树的概念与结构 概念&#xff…...

word文档中有大量空白行删除不掉,怎么办?

现象: 分页之间的空白行太多了( 按回车没用。删除也删除不掉 ) 解决办法: 按ctrl a 全选这个文档右击鼠标,点击【段落】选择【换行和分页】,然后把【分页】里的选项全部勾掉,然后点击【确定】…...

python rabbitmq实现简单/持久/广播/组播/topic/rpc消息异步发送可配置Django

windows首先安装rabbitmq 点击参考安装 1、环境介绍 Python 3.10.16 其他通过pip安装的版本(Django、pika、celery这几个必须要有最好版本一致) amqp 5.3.1 asgiref 3.8.1 async-timeout 5.0.1 billiard 4.2.1 celery 5.4.0 …...

构建高性能异步任务引擎:FastAPI + Celery + Redis

在现代应用开发中,异步任务处理是一个常见的需求。无论是数据处理、图像生成,还是复杂的计算任务,异步执行都能显著提升系统的响应速度和吞吐量。今天,我们将通过一个实际项目,探索如何使用 FastAPI、Celery 和 Redis …...

永磁同步电机无速度算法--全阶滑模观测器

一、原理介绍 在采用传统滑模观测器求取电机角度时通常存在系统抖振、低通滤波器导致角度相位滞后、角度的求取等问题。针对上述问题,本文采用全阶滑模观测器,该全阶滑模观测器具有二阶低通滤波器的特性,能有效滤除反电动势中的高频噪声&…...

部署开源大模型的硬件配置全面指南

目录 第一章:理解大型模型的硬件需求 1.1 模型部署需求分析 第二章:GPU资源平台 2.1 免费GPU资源 2.1.1 阿里云人工智能PAI 2.1.2 阿里天池实验室 2.1.3 Kaggle 2.1.4 Google Colab 2.2 付费GPU服务 2.2.1 AutoDL 2.2.2 Gpushare Cloud 2.2.3 Featurize 2.2.4 A…...

三、使用langchain搭建RAG:金融问答机器人--检索增强生成

经过前面2节数据准备后,现在来构建检索 加载向量数据库 from langchain.vectorstores import Chroma from langchain_huggingface import HuggingFaceEmbeddings import os# 定义 Embeddings embeddings HuggingFaceEmbeddings(model_name"m3e-base")#…...

Day13 用Excel表体验梯度下降法

Day13 用Excel表体验梯度下降法 用所学公式创建Excel表 用Excel表体验梯度下降法 详见本Day文章顶部附带资源里的Excel表《梯度下降法》,可以对照表里的单元格公式进行理解,还可以多尝试几次不同的学习率 η \eta η来感受,只需要更改学习率…...

计算机组成原理的学习笔记(5)--数据的表示与运算·其四 浮点数的储存和加减/内存对齐/大端小端

学习笔记 前言 本文主要是对于b站尚硅谷的计算机组成原理的学习笔记,仅用于学习交流。 1. 浮点数的表示与运算 规格化数: 浮点数的存储格式为 ,其中: 为符号位。 为尾数,通常在0和1之间(规格化形式为1.xx…...

华为IPD流程6大阶段370个流程活动详解_第二阶段:计划阶段 — 86个活动

华为IPD流程涵盖了产品从概念到上市的完整过程,各阶段活动明确且相互衔接。在概念启动阶段,产品经理和项目经理分析可行性,PAC评审后成立PDT。概念阶段则包括产品描述、市场定位、投资期望等内容的确定,同时组建PDT核心组并准备项目环境。团队培训涵盖团队建设、流程、业务…...

如何使用 Flask 框架创建简单的 Web 应用?

Flask是一个轻量级的Web应用框架,用Python编写,非常适合快速开发和原型设计。 它提供了必要的工具和技术来构建一个Web应用,同时保持核心简单,不强制使用特定的工具或库。 二、创建第一个Flask应用 安装Flask 首先&#xff0c…...

将Minio设置为Django的默认Storage(django-storages)

这里写自定义目录标题 前置说明静态文件收集静态文件 使用django-storages来使Django集成Minio安装依赖settings.py测试收集静态文件测试媒体文件 前置说明 静态文件 Django默认的Storage是本地,项目中的CSS、图片、JS都是静态文件。一般会将静态文件放到一个单独…...

sed | 一些关于 sed 的笔记

sed 总结 sed 语法sed [-hnV] [-e<script>] [-f<script文件>] [文本文件]--- 参数&#xff1a;-e<script> 以选项中指定的script 来处理输入的文本文件-f<script文件> 以选项中指定的script 文件来处理输入的文本文件-n 禁用 pattern space 的默认输出…...

wtforms+flask_sqlalchemy在flask-admin视图下实现日期的修改与更新

背景&#xff1a; 在flask-admin 的modelview视图下实现自定义视图的表单修改/编辑是件不太那么容易的事情&#xff0c;特别是想不自定义前端view的情况下。 材料&#xff1a; wtformsflask_sqlalchemy 制作&#xff1a; 上代码 1、模型代码 from .exts import db from …...

AI的进阶之路:从机器学习到深度学习的演变(三)

&#xff08;承接上集&#xff1a;AI的进阶之路&#xff1a;从机器学习到深度学习的演变&#xff08;二&#xff09;&#xff09; 四、深度学习&#xff08;DL&#xff09;&#xff1a;机器学习的革命性突破 深度学习&#xff08;DL&#xff09;作为机器学习的一个重要分支&am…...

thinkphp 多选框

视图 <div class"form-group"><label for"c-flag" class"control-label col-xs-12 col-sm-2 col-md-4">{:__(Flag)}</label><div class"col-xs-12 col-sm-8 col-md-8"><!--formatter:off--><select …...

机器学习《西瓜书》学习笔记《待续》

如果说&#xff0c;计算机科学是研究关于“算法”的学问&#xff0c;那么机器学习就是研究关于“学习算法”的学问。 目录 绪论引言基本术语 扩展向量的张成-span使用Markdown语法编写数学公式希腊字母的LaTex语法插入一些数学的结构插入定界符插入一些可变大小的符号插入一些函…...

STM32HAL I2C函数

8.5 使用IIC协议读写EEPROM 硬件方式实现 &#xff08;HAL库&#xff09; **HAL_I2C_Mem_Write() :这种方法可以写1个或者多个字节 ** /*** brief 以阻塞模式向指定的内存地址写入数据* param hi2c 指向 I2C_HandleTypeDef 结构体的指针&#xff0c;包含指定 I2C 的配置信息…...