当前位置: 首页 > news >正文

【ETCD】【Linearizable Read OR Serializable Read】ETCD 数据读取:强一致性 vs 高性能,选择最适合的读取模式

ETCD 提供了两种不同类型的读取操作方式,分别是 Linearizable Read(线性化读取)和 Serializable Read(可串行化读取)。这两种方式主要区分在读取数据时对一致性的要求不同。

目录

      • 1. Linearizable Read(线性化读取)
        • 特点:
        • 优点:
        • 缺点:
      • 2. Serializable Read(可串行化读取)
        • 特点:
        • 优点:
        • 缺点:
      • 总结:

1. Linearizable Read(线性化读取)

线性化读取保证了读取到的数据是 最新的,即保证了对所有客户端的一致性视图。它确保每次读取操作都能返回所有前一个写操作的结果。简单来说,线性化读取保证了客户端读取到的数据至少是写入的数据的“最新值”,并且该值是经过共识协议(如 Raft)确认的。

特点:
  • 严格一致性:每次读取的数据都来自一个已经提交的写操作,并且该操作在集群中是被一致认可的。
  • 阻塞读取:在进行线性化读取时,ETCD 会确保客户端从最新的数据源中读取数据,因此可能需要等待 Raft 协议完成数据的一致性同步,导致读取操作可能会有延迟。
优点:
  • 数据一致性:保证读取到的是最新的数据,满足强一致性要求,适用于对数据一致性要求高的场景。
缺点:
  • 性能较低:由于线性化读取需要跨节点的共识来保证数据一致性,可能导致较高的延迟和较低的吞吐量,尤其是在高并发情况下。

2. Serializable Read(可串行化读取)

可串行化读取是一个更宽松的读取模式,它允许读取到的数据在某些情况下可能并不是最新的,但仍然保证读取的数据满足一定的序列化规则。换句话说,ETCD 会确保多个并发的读取操作不会造成数据冲突或不一致,但可能会读取到稍微过时的数据。

特点:
  • 顺序一致性:可串行化读取保证多个操作(无论是写操作还是读操作)是可以按顺序串行化的。即使不同客户端的操作并发发生,也会确保没有冲突。
  • 不需要强一致性:与线性化读取不同,可串行化读取不一定要求读取到最新的数据。它保证数据在逻辑上是顺序一致的。
优点:
  • 较高的性能:由于不要求强一致性,读取操作的延迟较低,性能更好,适合高吞吐量的场景。
  • 支持并发操作:可串行化读取适合对一致性要求较低但对并发性要求高的场景。
缺点:
  • 一致性不强:读取的数据可能是过时的,无法保证读取到最新的数据。适用于对一致性要求不高的场景。

总结:

特性Linearizable Read (线性化读取)Serializable Read (可串行化读取)
一致性保证强一致性,读取的数据是最新的顺序一致性,读取的数据可能稍微过时
性能性能较低,可能导致较高延迟和吞吐量降低性能较高,读取操作响应较快
适用场景对数据一致性要求高的场景(如配置管理、分布式锁)对并发性能要求高、一致性要求相对较低的场景
数据时效性保证读取到最新的数据可能读取到过时的数据
操作复杂度需要通过 Raft 协议保证一致性,通常需要等待数据同步不强制要求最新数据,可接受延迟或旧数据
写入延迟影响写入操作和读取操作紧密相关,写入延迟可能影响读取写入操作可能不会直接影响读取,系统更容错
Leader 节点的影响读取操作需要通过 Leader 节点进行,Leader 节点可能成为性能瓶颈,影响整体吞吐量和响应时间读取操作可以从 Follower 节点进行,减轻了 Leader 节点的负担,提供更好的负载均衡和性能
优点- 确保读取到的是最新的数据- 较高的性能,低延迟
- 强一致性,适用于对一致性要求高的场景- 更适合高并发的场景
缺点- 性能较低,可能会增加延迟和降低吞吐量- 读取的数据可能是过时的,不能保证最新数据
- Leader 节点可能成为瓶颈,影响整体性能- 无法保证数据总是最新的

相关文章:

【ETCD】【Linearizable Read OR Serializable Read】ETCD 数据读取:强一致性 vs 高性能,选择最适合的读取模式

ETCD 提供了两种不同类型的读取操作方式,分别是 Linearizable Read(线性化读取)和 Serializable Read(可串行化读取)。这两种方式主要区分在读取数据时对一致性的要求不同。 目录 1. Linearizable Read(线…...

【CSS in Depth 2 精译_089】15.2:CSS 过渡特效中的定时函数

当前内容所在位置(可进入专栏查看其他译好的章节内容) 第五部分 添加动效 ✔️【第 15 章 过渡】 ✔️ 15.1 状态间的由此及彼15.2 定时函数 ✔️ 15.2.1 定制贝塞尔曲线 ✔️15.2.2 阶跃 ✔️ 15.3 非动画属性 文章目录 15.2 定时函数 Timing function…...

不常用命令指南

常用命令网上资料很多,讲的也不错。这里记录下日常工作中用到的,但对于新手又不常用的命令 文章目录 信息相关进程相关htoppgrep(根据指定的条件获取进程id)lsof 网络相关ssnc(netcat) 信息相关 进程相关 …...

spring mvc | servlet :serviceImpl无法自动装配 UserMapper

纯注解SSM整合 解决办法: 在MybatisConfig添加 Configuration MapperScan("mapper")...

STM32 HAL库之串口接收不定长字符

背景 在项目开发过程中,经常会使用MCU的串口与外界进行通信,例如两个单片机之间TTL电平型串口通信,单片机与成熟电路模块之间的串口通信等等.... 如何高效的使用串口是开发人员必须关注的问题。 STM32的HAL库为我们提供了三种串口通信机制&am…...

Pyqt6的tableWidget填充数据

代码 from PySide6.QtWidgets import QTableWidget QTableWidgetItemdef tableInit(self):self.tableWidgetself.tableWidget.setSelectionBehavior(QAbstractItemView.SelectRows)module_keyWord readJsonToDict(keyWordFileDir module_name) #读取模块关键字json字典数据s…...

ASP.NET Core - 依赖注入 自动批量注入

依赖注入配置变形 随着业务的增长,我们项目工作中的类型、服务越来越多,而每一个服务的依赖注入关系都需要在入口文件通过Service.Add{}方法去进行注册,这将是非常麻烦的,入口文件需要频繁改动,而且代码组织管理也会变…...

UVM 验证方法学之interface学习系列文章(十一)virtual interface 再续篇

一 前言 并非总是可以将被测单元(DUT)视为一个黑盒,即仅监控和驱动DUT的顶层端口信号。这一点在从模块级测试转向更大规模的系统级测试时尤为明显。有时,我们需要了解实现细节以便访问DUT内部的信号。这被称为白盒验证。 Verilog一直提供从其他作用域访问几乎任何层次结构…...

面试题整理5----进程、线程、协程区别及僵尸进程处理

面试题整理5----进程、线程、协程区别及僵尸进程处理 1. 进程、线程与协程的区别1.1 进程(Process)1.2 线程(Thread)1.3 协程(Coroutine)2. 总结对比 3. 僵尸进程3.1 什么是僵尸进程?3.2 僵尸进…...

OpenTK 中帧缓存的深度解析与应用实践

摘要: 本文深入探讨了 OpenTK 中帧缓存的使用。首先介绍了帧缓存的基本概念与在图形渲染管线中的关键地位,包括其与颜色缓存、深度缓存、模板缓存等各类缓存的关联。接着详细阐述了帧缓存对象(FBO)的创建、绑定与解绑等操作,深入分析了纹理附件、渲染缓冲区附件在 FBO 中的…...

第2节-Test Case如何调用Object Repository中的请求并关联参数

前提: 已经创建好了project(File -> New -> Project,Type:API/WebService),object repository中已经创建了RESTful endpoint(Object Repository -> New -> Web Service Request&am…...

【HarmonyOS NEXT】Web 组件的基础用法以及 H5 侧与原生侧的双向数据通讯

关键词:鸿蒙、ArkTs、Web组件、通讯、数据 官方文档Web组件用法介绍:文档中心 Web 组件加载沙箱中页面可参考我的另一篇文章:【HarmonyOS NEXT】 如何将rawfile中文件复制到沙箱中_鸿蒙rawfile 复制到沙箱-CSDN博客 目录 如何在鸿蒙应用中加…...

Android学习(六)-Kotlin编程语言-数据类与单例类

假设我们要创建一个表示书籍的数据类 Book,包含书名和作者两个字段。在 Java 中,代码如下: public class Book { String title; String author; public Book(String title, String author) { this.title title; this.author author; } Ove…...

CV-OCR经典论文解读|An Empirical Study of Scaling Law for OCR/OCR 缩放定律的实证研究

论文标题 An Empirical Study of Scaling Law for OCR OCR 缩放定律的实证研究 论文链接: An Empirical Study of Scaling Law for OCR论文下载 论文作者 Miao Rang, Zhenni Bi, Chuanjian Liu, Yunhe Wang, Kai Han 内容简介 本论文在光学字符识别&#xf…...

力扣274. H 指数

给你一个整数数组 citations ,其中 citations[i] 表示研究者的第 i 篇论文被引用的次数。计算并返回该研究者的 h 指数。 根据维基百科上 h 指数的定义:h 代表“高引用次数” ,一名科研人员的 h 指数 是指他(她)至少发…...

挑战一个月基本掌握C++(第五天)了解运算符,循环,判断

一 运算符 运算符是一种告诉编译器执行特定的数学或逻辑操作的符号。C 内置了丰富的运算符,并提供了以下类型的运算符: 算术运算符关系运算符逻辑运算符位运算符赋值运算符杂项运算符 1.1 算术运算符 假设变量 A 的值为 10,变量 B 的值为…...

Python的sklearn中的RandomForestRegressor使用详解

文章目录 Python的sklearn中的RandomForestRegressor使用详解一、引言二、RandomForestRegressor简介1、随机森林回归原理2、RandomForestRegressor的主要参数 三、构建和训练模型1、数据准备2、数据划分3、模型训练 四、模型评估1、预测2、评估指标 五、特征重要性分析六、可视…...

ReactPress 1.6.0:重塑博客体验,引领内容创新

ReactPress 是一个基于Next.js的博客&CMS系统, Github项目地址:https://github.com/fecommunity/reactpress 欢迎Star。 体验地址:http://blog.gaoredu.com/ 今天,我们自豪地宣布ReactPress 1.6.0版本的正式发布,…...

人脸生成3d模型 Era3D

从单视图图像进行3D重建是计算机视觉和图形学中的一项基本任务,因为它在游戏设计、虚拟现实和机器人技术中具有潜在的应用价值。早期的研究主要依赖于直接在体素上进行3D回归,这往往会导致过于平滑的结果,并且由于3D训练数据的限制&#xff0…...

kubeadm搭建k8s集群

前置环境: 准备三台虚拟机 192.168.1.104(用来做k8s的mater节点) 192.168.1.105(节点node2) 192.168.1.109(节点node3) 关闭防火墙 systemctl stop firewalld systemctl disable firewalld安装…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理&#xff1a…...

云计算——弹性云计算器(ECS)

弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...