当前位置: 首页 > news >正文

Python的sklearn中的RandomForestRegressor使用详解

文章目录

  • Python的sklearn中的RandomForestRegressor使用详解
    • 一、引言
    • 二、RandomForestRegressor简介
      • 1、随机森林回归原理
      • 2、RandomForestRegressor的主要参数
    • 三、构建和训练模型
      • 1、数据准备
      • 2、数据划分
      • 3、模型训练
    • 四、模型评估
      • 1、预测
      • 2、评估指标
    • 五、特征重要性分析
    • 六、可视化特征重要性
    • 七、总结

Python的sklearn中的RandomForestRegressor使用详解

一、引言

随机森林回归(Random Forest Regression)是一种集成学习方法,它通过构建多个决策树并输出它们的预测结果的平均值来进行回归预测。这种方法在处理高维数据时表现出色,并且能够处理特征之间的相互作用。在Python中,我们可以通过scikit-learn库中的RandomForestRegressor类来实现这一算法。
在这里插入图片描述

二、RandomForestRegressor简介

1、随机森林回归原理

随机森林回归通过构建多个决策树来进行预测,每棵树都是独立构建的,它们在训练数据的随机样本上进行训练。最终的预测结果是所有树预测结果的平均值。这种方法可以减少过拟合的风险,并提高模型的泛化能力。

2、RandomForestRegressor的主要参数

  • n_estimators:森林中树的数量,默认为100。
  • max_depth:树的最大深度,如果设置为None,则树会完全生长。
  • min_samples_split:分割内部节点所需的最小样本数。
  • min_samples_leaf:叶节点所需的最小样本数。
  • max_features:寻找最佳分割时要考虑的特征数量。

三、构建和训练模型

1、数据准备

首先,我们需要准备数据集。这里以加州房价数据集为例,该数据集包含多个特征,目标是预测房价。

from sklearn.datasets import fetch_california_housing
data = fetch_california_housing()
X, y = data.data, data.target

2、数据划分

将数据集划分为训练集和测试集。

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

3、模型训练

使用RandomForestRegressor训练模型。

from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(X_train, y_train)

四、模型评估

1、预测

使用训练好的模型进行预测。

y_pred = rf.predict(X_test)

2、评估指标

可以使用均方误差(MSE)、平均绝对误差(MAE)和决定系数(R²)来评估模型的性能。

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
mse = mean_squared_error(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f"MSE: {mse}, MAE: {mae}, R²: {r2}")

五、特征重要性分析

随机森林模型能够提供特征的重要性分数,这有助于我们理解哪些特征对预测结果影响最大。

importances = rf.feature_importances_
indices = np.argsort(importances)[::-1]

六、可视化特征重要性

通过可视化特征重要性,我们可以更直观地理解模型的决策过程。

import matplotlib.pyplot as plt
plt.figure(figsize=(10, 6))
plt.title('Feature Importances')
plt.bar(range(X.shape[1]), importances[indices], color='r', align='center')
plt.xticks(range(X.shape[1]), data.feature_names[indices], rotation=90)
plt.xlim([-1, X.shape[1]])
plt.show()

七、总结

随机森林回归是一种强大的机器学习算法,它通过集成多个决策树来提高预测的准确性和鲁棒性。在scikit-learn中,RandomForestRegressor类提供了一个简单而有效的方式来实现这一算法。通过调整不同的参数,我们可以优化模型的性能,并利用特征重要性分析来深入了解数据。


版权声明:本博客内容为原创,转载请保留原文链接及作者信息。

参考文章

  • 机器学习_Scikit-Learn随机森林回归(RandomForestRegressor)
  • sklearn机器学习实战——随机森林回归与特征重要性分析全过程(附完整代码和结果图)

相关文章:

Python的sklearn中的RandomForestRegressor使用详解

文章目录 Python的sklearn中的RandomForestRegressor使用详解一、引言二、RandomForestRegressor简介1、随机森林回归原理2、RandomForestRegressor的主要参数 三、构建和训练模型1、数据准备2、数据划分3、模型训练 四、模型评估1、预测2、评估指标 五、特征重要性分析六、可视…...

ReactPress 1.6.0:重塑博客体验,引领内容创新

ReactPress 是一个基于Next.js的博客&CMS系统, Github项目地址:https://github.com/fecommunity/reactpress 欢迎Star。 体验地址:http://blog.gaoredu.com/ 今天,我们自豪地宣布ReactPress 1.6.0版本的正式发布,…...

人脸生成3d模型 Era3D

从单视图图像进行3D重建是计算机视觉和图形学中的一项基本任务,因为它在游戏设计、虚拟现实和机器人技术中具有潜在的应用价值。早期的研究主要依赖于直接在体素上进行3D回归,这往往会导致过于平滑的结果,并且由于3D训练数据的限制&#xff0…...

kubeadm搭建k8s集群

前置环境: 准备三台虚拟机 192.168.1.104(用来做k8s的mater节点) 192.168.1.105(节点node2) 192.168.1.109(节点node3) 关闭防火墙 systemctl stop firewalld systemctl disable firewalld安装…...

centOS系统进程管理基础知识

进程的概念与属性 1.进程是系统中正在执行的代码片段,也可以称为一个程序。 2.操作系统通过分配进程编号(PID)来管理进程。 3.进程属性包括PID、PPID、UID、GID、状态、优先级、终端名和资源占用等。 PS命令与进程查看 1.PS命令用于查看进程…...

STM32中ADC模数转换器

一、ADC简介 ADC模拟-数字转换器 ADC可以将引脚连续变化的模拟电压转换为内存中存储的数字变量,建立模拟电路到数字电路的桥梁 12位逐次逼近型ADC,1us转换时间 输入电压范围: 0~3.3V,转换结果范围:0~4095 18个输入…...

初学stm32 --- 外部中断

目录 STM32 IO 口中断基础知识 相关库函数: 使用 IO 口外部中断的一般步骤 STM32 IO 口中断基础知识 STM32 的每个 IO 都可以作为外部中断的中断输入口。STM32F103 的中断控制器支持 19 个外部中断/事件请求。每个中断设有状态位,每个中断/事件都有独立…...

wordpress调用指定分类ID下 相同标签的内容

要在WordPress中调用分类ID为1、3、7的分类下,具有相同标签的前10个内容,可以使用自定义的WordPress查询(WP_Query)。以下是实现此功能的步骤和示例代码: 步骤: 确定共同标签: 首先,你需要确定分类1、3、…...

SQL语法基础知识总结

一、引言 在当今数字化时代,数据的存储和管理至关重要。SQL(Structured Query Language),即结构化查询语言,是用于管理关系型数据库的强大工具。无论是开发 Web 应用、进行数据分析还是处理企业级数据,掌握…...

css 实现呼吸灯效果

先看效果&#xff1a; 动画的结果就想实在呼吸,完整的代码如下&#xff1a; <template><div class"container"><div class"long-breath"></div></div> </template><style lang"less"> html, body{h…...

IMX6ULL开发板如何关掉自带的QT的GUI界面和poky的界面的方法

重要说明&#xff1a;其实最后发现根本没必要去关掉自带的QT的GUI界面&#xff0c;直接把屏幕先刷黑就可以看到测试效果了&#xff0c;把屏蔽先刷黑的代码见博文&#xff1a; https://blog.csdn.net/wenhao_ir/article/details/144594705 不过&#xff0c;既然花了时间摸索如何…...

几种广泛使用的 C++ 编译器

C 编译器有很多种&#xff0c;它们在不同的操作系统和开发环境中提供服务。以下是几种广泛使用的 C 编译器&#xff1a; 1. GCC (GNU Compiler Collection) 平台&#xff1a;跨平台&#xff08;Linux, macOS, Windows&#xff09;特点&#xff1a;GCC 是一个自由软件编译器套…...

《Vue进阶教程》第十六课:深入完善响应式系统之单例模式

往期内容&#xff1a; 《Vue进阶教程》第五课&#xff1a;ref()函数详解(重点) 《Vue进阶教程》第六课&#xff1a;computed()函数详解(上) 《Vue进阶教程》第七课&#xff1a;computed()函数详解(下) 《Vue进阶教程》第八课&#xff1a;watch()函数的基本使用 《Vue进阶教…...

C语言版解法力扣题:将整数按权重排序

1.题目描述 我们将整数 x 的 权重 定义为按照下述规则将 x 变成 1 所需要的步数&#xff1a; 如果 x 是偶数&#xff0c;那么 x x / 2 如果 x 是奇数&#xff0c;那么 x 3 * x 1 比方说&#xff0c;x3 的权重为 7 。因为 3 需要 7 步变成 1 &#xff08;3 --> 10 -->…...

Unity ECS和OOP优劣对比

OOP的优劣 面向对象编程&#xff08;OOP, Object-Oriented Programming&#xff09;是一种通过对象及其交互来组织代码的编程范式&#xff0c;广泛应用于软件开发中。以下是OOP的优缺点&#xff1a; 优点 代码可重用性 继承机制&#xff1a;通过继承&#xff0c;子类可以复用…...

【Java基础面试题026】Java中的String、StringBuffer和StringBuilder的区别是什么?

回答重点 他们都是Java中处理字符串的类&#xff0c;区别主要体现在可变性、线程安全和性能上 1&#xff09;String 不可变&#xff1a;String是不可变类&#xff0c;字符串对象创建&#xff0c;存储在堆中&#xff0c;字符串内容存储在字符串常量池中&#xff0c;一旦创建内…...

解析在OceanBase创建分区的常见问题|OceanBase 用户问题精粹

在《分区策略和管理分区计划的实践方案》这篇文章中&#xff0c;我们介绍了在ODC中制定分区策略及有效管理分区计划的经验。有不少用户在该帖下提出了使用中的问题&#xff0c;其中一个关于创建分区的限制条件的问题&#xff0c;也是很多用户遭遇的老问题。因此本文以其为切入&…...

Flutter组件————Container

Container Container 是 Flutter 中最常用的布局组件之一 参数 参数名称类型描述alignmentAlignmentGeometry定义子组件在其内部的对齐方式&#xff0c;默认为 null&#xff0c;即不改变子组件的位置。paddingEdgeInsetsGeometry内边距&#xff0c;用于在子组件周围添加空间…...

Java重要面试名词整理(二):SpringMyBatis

文章目录 Spring篇Spring核心推断构造方法AOP动态代理Advice的分类Advisor的理解AOP相关的概念 定义BeanASM技术JFR依赖注入循环依赖LifecycleSpring AOT Spring事务Spring事务传播机制Spring事务传播机制是如何实现的呢?Spring事务传播机制分类 SpringMVCHandlerHandlerMappi…...

Excel生成DBC脚本源文件

Excel制作 新建一个Excel&#xff0c;后缀为“.xls” 工作本名称改为“CAN_Matrix” 在首行按照列来起名字&#xff0c;在里面只需要填写必须的内容即可。 列数名称第0列Message Name第1列Message Format第2列Message ID第3列Message Length (byte)第4列Message Transmitte…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

从零手写Java版本的LSM Tree (一):LSM Tree 概述

&#x1f525; 推荐一个高质量的Java LSM Tree开源项目&#xff01; https://github.com/brianxiadong/java-lsm-tree java-lsm-tree 是一个从零实现的Log-Structured Merge Tree&#xff0c;专为高并发写入场景设计。 核心亮点&#xff1a; ⚡ 极致性能&#xff1a;写入速度超…...