当前位置: 首页 > news >正文

知识图谱+RAG学习

GraphRAG(Graph-based Retrieval-Augmented Generation)是微软在2024年推出的一项开源技术,旨在通过结合知识图谱和检索增强生成(RAG)方法,为大型语言模型(LLM)的数据处理提供全新解决方案。它特别适用于需要理解复杂关系、推理或多领域信息整合的任务。

知识图谱是一种以图结构存储和表示实体及其之间关系的数据模型。GraphRAG利用知识图谱表示法,将非结构化数据转化为结构化信息,从而提升LLM的推理能力。例如:

  • 节点:表示实体(如人、地点、事件)。
  • 边:表示实体之间的关系(如“属于”、“影响”)。

RAG是一种结合检索和生成的混合架构,分为两个阶段:

  • 检索阶段:从外部知识库或文档中检索相关信息。
  • 生成阶段:结合检索到的信息生成答案或内容。

GraphRAG在RAG的基础上加入图结构信息,使得模型不仅能“查找到正确答案”,还可以通过图分析理解“答案之间的关系”。

GraphRAG使用图机器学习(Graph Machine Learning)算法,如图神经网络(GNNs)、随机游走和社区检测,用于:

  • 提高对节点(实体)的语义理解。
  • 提取图中重要的结构性关系。
  • 高效执行复杂推理任务。

1. 深度语义理解

GraphRAG通过构建知识图谱,让LLM从“单一语句理解”提升到“多实体关系推理”。这意味着模型不仅能回答直接问题,还能对多层次、复杂关系问题提供更准确的回答。

2. 动态跨领域整合

GraphRAG支持跨领域的多模态数据整合,无论是文本、图像还是结构化数据,都能构建统一的知识图谱,并实现推理。

3. 提高信息检索效率

传统检索基于关键字或句向量,而GraphRAG通过图结构显著提升了检索效率,尤其是对于高关联性问题,如医学诊断或金融分析。

4. 应用场景广泛
  • 问答系统:在复杂的问答任务中,通过构建知识图谱,GraphRAG能够生成更加准确和解释性强的答案。
  • 科学研究:帮助研究人员整理复杂数据,并发现新的关联或假设。
  • 个性化推荐:基于用户行为构建图谱,提供更精准的推荐。

如何学习GraphRAG?

Step 1: 理解基础知识
  1. 知识图谱:学习知识图谱构建的基本理论(RDF、OWL等)。
  2. 图算法:熟悉图数据结构和常见算法(如最短路径、社区检测)。
  3. 检索增强生成:理解RAG的检索与生成模块工作原理。
Step 2: 阅读GraphRAG官方文档

访问微软开源的GraphRAG GitHub仓库,仔细阅读其官方文档和使用教程。一般包括以下内容:

  • 系统架构设计。
  • 数据预处理和知识图谱构建步骤。
  • 实验设置和运行环境配置。
Step 3: 实践操作
  1. 搭建环境:使用官方提供的Docker镜像或Python库,部署GraphRAG。
  2. 数据集准备:选择一个感兴趣的领域(如医疗、金融),收集相关数据集,并构建知识图谱。
  3. 模型训练:尝试从头构建图结构数据,并训练模型以回答复杂问题。
Step 4: 进阶研究

参与社区讨论,关注微软发布的研究论文。研究GraphRAG如何结合其他前沿技术(如多模态学习、时序图推理)。

与知识图谱结合的应用方法

1. 基于图谱的检索增强

GraphRAG与知识图谱的结合点在于通过知识图谱提供结构化上下文信息,使检索与生成阶段更高效。例如:

  • 在问答场景中,GraphRAG从知识图谱中检索与问题相关的节点和路径,用于生成更有针对性的回答。
2. 动态图更新与推理

知识图谱并非静态资源,可以根据新数据动态更新节点和边。GraphRAG结合GNN等方法,可以实现图谱的实时推理。

3. 多源异构数据整合

对于用户的研究领域,例如多源异构数据中台,GraphRAG可以:

  • 解析与整合来自不同卫星的轨道数据。
  • 构建星座图谱,实现任务调度优化与动态分析。

相关文章:

知识图谱+RAG学习

GraphRAG(Graph-based Retrieval-Augmented Generation)是微软在2024年推出的一项开源技术,旨在通过结合知识图谱和检索增强生成(RAG)方法,为大型语言模型(LLM)的数据处理提供全新解…...

消息队列技术的发展历史

消息队列技术的演进历程宛如一幅波澜壮阔的科技画卷,历经多个标志性阶段,各阶段紧密贴合不同的技术需求与市场风向,下面为您详细道来。 第一阶段:消息中间件的起源(1970 年代末期 - 1980 年代中期) 在计算…...

每天40分玩转Django:Django部署

Django部署 一、今日学习内容概述 学习模块重要程度主要内容生产环境配置⭐⭐⭐⭐⭐settings配置、环境变量WSGI服务器⭐⭐⭐⭐⭐Gunicorn配置、性能优化Nginx配置⭐⭐⭐⭐反向代理、静态文件安全设置⭐⭐⭐⭐⭐SSL证书、安全选项 二、生产环境配置 2.1 项目结构调整 mypr…...

搭建Elastic search群集

一、实验环境 二、实验步骤 Elasticsearch 是一个分布式、高扩展、高实时的搜索与数据分析引擎Elasticsearch目录文件: /etc/elasticsearch/elasticsearch.yml#配置文件 /etc/elasticsearch/jvm.options#java虚拟机 /etc/init.d/elasticsearch#服务启动脚本 /e…...

解析 Ingress-Nginx 故障:排查思路与方法

文章目录 一、什么是Ingress-Nginx二、故障排除1.1Ingress-Controller日志和事件检查 Ingress 资源事件检查 Nginx 配置检查使用的服务是否存在调试日志 1.2对 Kubernetes API 服务器的认证服务认证服务账户Kube-Config 1.3使用GDB和Nginx1.4在 Nginx 4.2.5 或其他版本&#xf…...

2024 楚慧杯 re wp

go_bytes 附件拖入ida 输入长度为0x28,每两位字符的4bit拼接 与一个常量值经过运算后的值进行异或,并且判断是否相等 脚本 bouquet 附件拖入ida。简单去一下花 构建了一个二叉树,然后递归调用函数 重新排列一下再层序遍历读出即可 zistel 附件…...

【物联网技术与应用】实验10:蜂鸣器实验

实验10 蜂鸣器实验 【实验介绍】 蜂鸣器是音频信号装置。蜂鸣器可分为有源蜂鸣器和无源蜂鸣器。 【实验组件】 ● Arduino Uno主板* 1 ● USB数据线* 1 ● 有源蜂鸣器* 1 ● 无源蜂鸣器* 1 ● 面包板* 1 ● 9V方型电池* 1 ● 跳线若干 【实验原理】 如图所示&#x…...

单片机:实现矩阵键盘控制LCD屏幕(附带源码)

单片机实现矩阵键盘控制LCD屏幕 矩阵键盘(Matrix Keypad)是一种常用的输入设备,广泛应用于嵌入式系统中。在许多嵌入式应用中,我们常常需要通过按键输入来控制系统的功能。结合LCD显示屏,我们可以实现一个简单的界面&…...

鸿蒙Next之包体积极限优化

鸿蒙应用包大小优化全解析 在鸿蒙应用开发中,减小应用包大小对于提升应用下载和安装体验起着关键作用。通过压缩、精简或复用应用中的代码与资源,能有效降低包体积,减少空间占用并加快下载与安装速度。下面详细介绍一下鸿蒙应用包大小优化的…...

Android实战经验篇-log工具

详细代码实现及系列文章请转如下链接 Android实战经验篇-系列文章汇总 Android Display Graphics系列文章-汇总 一、基础知识 1.1 Logging简述 我们写的第一个计算机C程序一般是printf(“Hello world!”);这就是一个log输出。Linux内核有Kernel log以及配套的Log工具&#x…...

DPU编程技术解析与实践应用

一、引言 1.1 研究背景与目的 随着信息技术的飞速发展,数据中心在现代社会中的地位日益凸显,成为支撑各行业数字化转型的关键基础设施。在数据中心内部,数据的处理速度、效率和安全性成为了影响整体性能的核心要素。为了应对不断增长的数据…...

红帽认证的含金量和价值如何?怎么报名红帽认证考试?

红帽企业 Linux(RHEL)是由红帽公司提供的一款商业支持、专为生产环境设计的Linux发行版。随着IT系统和工作负载日益复杂化,底层基础设施及操作系统必须兼具可靠性、可扩展性,并能有效促进性能提升。红帽认证在全球范围享有盛誉&am…...

VS Code Copilot 与 Cursor 对比

选手简介 VS Code Copilot:算是“老牌”编程助手了,虽然Copilot在别的编辑器上也有扩展,不过体验最好的还是VS Code,毕竟都是微软家的所以功能集成更好一些;主要提供的是Complete和Chat能力,也就是代码补全…...

蓝桥杯嵌入式备赛教程(1、led,2、lcd,3、key)

一、工程模版创建流程 第一步 创建新项目 第二步 选择型号和管脚封装 第三步 RCC使能 外部时钟,高速外部时钟 第四步晶振时钟配置 由数据手册7.1可知外部晶振频率为24MHz 最后一项设置为80 按下回车他会自动配置时钟 第五步,如果不勾选可能程序只会…...

取多个集合的交集

1.我们取多个集合的交集&#xff0c;先把各个集合放入list中 List < Set < String > > listnew ArrayList<>();HashSet<String> set1new HashSet<>();set1.add( "A" );set1.add("B" );set1.add("C" );HashSet<…...

如何实现电子发票XML文件的合规性存档?

随着国家税务改革的推进&#xff0c;企业对电子发票的管理和存档要求越来越高。尤其是《财政部 国家税务总局关于进一步深化增值税发票管理改革的通知》&#xff08;财会〔2023〕18号文&#xff09;的发布&#xff0c;明确规定了电子发票的存档要求。这为企业在财务管理中的电子…...

IOT、MES、WMS、MOM 和 EPMS 系统综合技术与业务文档

IOT、MES、WMS、MOM 和 EPMS 系统综合技术与业务文档 一、引言 在现代制造业和工业管理领域&#xff0c;IOT&#xff08;物联网&#xff09;、MES&#xff08;制造执行系统&#xff09;、WMS&#xff08;仓库管理系统&#xff09;、MOM&#xff08;制造运营管理系统&#xff…...

IntelliJ IDEA Docker集成

一、概述 Docker是一种用于在隔离和可复制环境中部署和运行可执行文件的工具。这可能很有用&#xff0c;例如&#xff0c;在与生产相同的环境中测试代码。 IntelliJ IDEA集成了Docker功能&#xff0c;并为创建Docker映像、运行Docker容器、管理Docker Compose应用程序、使用公…...

【react项目】从零搭建react项目[nodejs安装]

〇、模板git下载地址 下载即用的模板地址&#xff1a; http:https://e.coding.net/uijiio/init_app/react_init_app.git ssh:gite.coding.net:uijiio/init_app/react_init_app.git 目前更新至:登录与主页跳转&#xff0c;主页包含菜单和容器区 一、搭建基础空白React项目 1.准备…...

【专题】2024年悦己生活消费洞察报告汇总PDF洞察(附原数据表)

原文链接&#xff1a; https://tecdat.cn/?p38654 在当今时代背景下&#xff0c;社会发展日新月异&#xff0c;人们的生活方式与消费观念正经历深刻变革。MoonFox 月狐数据的《2024 年悦己生活消费洞察报告》聚焦于这一充满活力与变化的消费领域。随着就业、婚姻等社会压力的…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...