当前位置: 首页 > news >正文

二叉树的最小深度

最小深度思路解析:

与求最大深度相比,求最小深度就要简单很多,从上向下访问,只要访问到一个叶节点,证明已经到达了与根节点距离最近的叶节点处,此叶节点的深度即为最小深度.借助队列,如果当前节点为叶节点,则返回该节点的深度为最终结果;如果当前节点不满足上述判断且不为空节点,即存在子节点,则将其子节点依次入队.因此,求最小深度的思路十分清晰.代码中的变量如下:

root变量:表示给定二叉树的根节点

queue变量:表示队列

depth变量:表示当前节点的深度,根节点的深度为1

node变量:表示取出的队列头部元素中的节点

有一点不同之处:每个节点入队时,将其所处深度与该节点以元组的方式一同入队,首先将根节点及其深度入队,以供迭代过程的开始.代码如下:

from collections import deque  # 导入deque,用于实现队列def minDepth(root):  # 定义函数minDepth,输入参数为二叉树的根节点rootif not root:  # 如果根节点为空,直接返回0,因为空树的深度为0return 0queue = deque([1, root])  # 初始化一个双端队列,将根节点和它的深度(1)作为队列的第一个元素while queue:  # 当队列不为空时,循环执行depth, node = queue.popleft()  # 从队列中弹出一个元素,包含当前节点的深度和节点本身if node and not node.left and not node.right:  # 如果当前节点是叶子节点(没有左右子节点)return depth  # 返回当前深度,因为找到了最小深度if node:  # 如果当前节点不为空queue.append((depth + 1, node.left))  # 将左子节点和它的深度(当前深度+1)加入队列queue.append((depth + 1, node.right))  # 将右子节点和它的深度(当前深度+1)加入队列

相关文章:

二叉树的最小深度

最小深度思路解析: 与求最大深度相比,求最小深度就要简单很多,从上向下访问,只要访问到一个叶节点,证明已经到达了与根节点距离最近的叶节点处,此叶节点的深度即为最小深度.借助队列,如果当前节点为叶节点,则返回该节点的深度为最终结果;如果当前节点不满足上述判断且不为空节…...

C#+OpenCv深度学习开发(常用模型汇总)

在使用 OpenCvSharp 结合深度学习进行机器视觉开发时,有许多现成的模型可以使用。以下是一些常用的深度学习模型,适用于不同的机器视觉任务,包括物体检测、图像分类和分割等。 使用示例 在 OpenCvSharp 中加载和使用这些模型的基本示例&…...

什么样的LabVIEW控制算自动控制?

自动控制是指系统通过预先设计的算法和逻辑,在无人工干预的情况下对被控对象的状态进行实时监测、决策和调整,达到预期目标的过程。LabVIEW作为一种图形化编程工具,非常适合开发自动控制系统。那么,什么样的LabVIEW控制算作“自动…...

Linux系统编程——理解系统内核中的信号捕获

目录 一、sigaction() 使用 信号捕捉技巧 二、可重入函数 三、volatile关键字 四、SIGCHLD信号 在信号这一篇中我们已经学习到了一种信号捕捉的调用接口:signal(),为了深入理解操作系统内核中的信号捕获机制,我们今天再来看一个接口:si…...

《Java 与 OpenAI 协同:开启智能编程新范式》

在当今科技飞速发展的时代,人工智能已成为推动各领域创新变革的核心力量。OpenAI 作为人工智能领域的领军者,其开发的一系列强大模型,如 GPT 系列,为自然语言处理等诸多任务带来了前所未有的突破。而 Java,作为一种广泛…...

基于Python大数据的电影可视化分析系统

标题:基于 Python 大数据的电影可视化分析系统 内容:1.摘要 本文介绍了一个基于 Python 大数据的电影可视化分析系统。该系统通过收集和分析大量电影数据,提供了对电影市场的深入洞察。文章首先介绍了系统的背景和目的,然后详细描述了系统的架构和功能。…...

【杂谈】-为什么Python是AI的首选语言

为什么Python是AI的首选语言 文章目录 为什么Python是AI的首选语言1、为何 Python 引领人工智能发展1.1 可用性和生态系统1.2 用户群和用例1.3 效率辅助 2、AI项目对Python开发人员的要求3、如何开启你的 AI 学习之旅 人工智能的广泛应用正在软件工程领域引发范式转变。Python凭…...

(高可用版本)Kubeadm+Containerd+keepalived部署高可用k8s(v1.28.2)集群

KubeadmContainerdkeepalived部署高可用k8s(v1.28.2)集群 一.环境准备,二.容器运行时Containerd安装请参照前文。KubeadmContainerd部署k8s(v1.28.2)集群(非高可用版)-CSDN博客 文章目录 KubeadmContainerdkeepalived部署高可用k8s(v1.28.2)集…...

单片机:实现自动关机电路(附带源码)

单片机实现自动关机电路 在许多嵌入式系统或便携式设备中,自动关机功能非常重要,尤其是在电池供电的设备中,防止设备长时间开启以节省电能。自动关机电路的基本功能是检测设备是否处于待机状态,若一定时间内未收到用户操作信号或…...

【YashanDB知识库】ycm-YashanDB列表有数据库显示故障排除步骤

本文内容来自YashanDB官网,原文内容请见 https://www.yashandb.com/newsinfo/7802959.html?templateId1718516 数据库状态 正常 异常 1、查看告警列表 例如:告警显示实例无法连接,一般是数据库实例服务掉了,需要尽快联系系统…...

高级的SQL查询技巧有哪些?

成长路上不孤单😊😊😊😊😊😊 【14后😊///C爱好者😊///持续分享所学😊///如有需要欢迎收藏转发///😊】 今日分享关于高级SQL查询技巧方面的相关内容&#xf…...

使用 UniApp 在微信小程序中实现 SSE 流式响应

概述 服务端发送事件(Server-Sent Events, SSE)是一种允许服务器向客户端推送实时更新的技术。SSE 提供了一种单向的通信通道,服务器可以持续地向客户端发送数据,而不需要客户端频繁发起请求。这对于需要实时更新的应用场景非常有…...

transformer用作分类任务

系列博客目录 文章目录 系列博客目录1、在手写数字图像这个数据集上进行分类1. 数据准备2. 将图像转化为适合Transformer的输入3. 位置编码4. Transformer编码器5. 池化操作6. 分类头7. 训练8. 评估总结流程:相关模型: 1、在手写数字图像这个数据集上进行…...

【枚举】假币问题

题目描述: 有12枚硬币。其中有11枚真币和1枚假币。假币和真币重量不同,但不知道假币比真币轻还是重。现在,用一架天平称了这些币三次,告诉你称的结果,请你找出假币并且确定假币是轻是重(数据保证一定能找出…...

easyExcel导出大数据量EXCEL文件,前端实现进度条或者遮罩层

需求:页面点击导出,先按照页面条件去数据库查询,然后将查询到的数据导出。 问题:由于查询特别耗时,所以点击之后页面会看上去没有反应 方案1:就在点击之后在页面增加了一个进度条,等待后端查询…...

Java模拟Mqtt客户端连接Mqtt Broker

Java模拟Mqtt客户端基本流程 引入Paho MQTT客户端库 <dependency><groupId>org.eclipse.paho</groupId><artifactId>org.eclipse.paho.mqttv5.client</artifactId><version>1.2.5</version> </dependency>设置mqtt配置数据 …...

【电商搜索】文档的信息论生成聚类

【电商搜索】文档的信息论生成聚类 目录 文章目录 【电商搜索】文档的信息论生成聚类目录文章信息概览研究背景技术挑战如何破局技术应用主要相关工作与参考文献后续优化方向 后记 文章信息 https://arxiv.org/pdf/2412.13534 概览 本文提出了一种基于信息论的生成聚类&#…...

在福昕(pdf)阅读器中导航到上次阅读页面的方法

文章目录 在福昕(pdf)阅读器中导航到上次阅读页面的方法概述笔记用书签的方法来导航用导航按钮的方法来导航 备注END 在福昕(pdf)阅读器中导航到上次阅读页面的方法 概述 喜欢用福昕(pdf)阅读器来看pdf文件。 但是有个小问题困扰了我好久。 e.g. 300页的pdf看了一半&#xff…...

基于Springboot的数字科技风险报告管理系统

博主介绍&#xff1a;java高级开发&#xff0c;从事互联网行业六年&#xff0c;熟悉各种主流语言&#xff0c;精通java、python、php、爬虫、web开发&#xff0c;已经做了多年的设计程序开发&#xff0c;开发过上千套设计程序&#xff0c;没有什么华丽的语言&#xff0c;只有实…...

【最后203篇系列】001 - 2024回顾

说明 最早在CSDN上写文章有两个目的&#xff1a; 1 自己梳理知识&#xff0c;以备日后查用2 曾经从别人的文章中得到过帮助&#xff0c;所以也希望能给人帮助 所以在这个过程中&#xff0c;我的文章基本上完全是原创&#xff0c;也非常强调落地与工程化。在不断写作的过程中…...

量子退火与机器学习(1):少量数据求解未知QUBO矩阵,以少见多

文章目录 前言ー、复习QUBO&#xff1a;中药配伍的复杂性1.QUBO 的介入&#xff1a;寻找最佳药材组合 二、难题&#xff1a;QUBO矩阵未知的问题1.为什么这么难&#xff1f; 三、稀疏建模(Sparse Modeling)1. 欠定系统中的稀疏解2. L1和L2的选择&#xff1a; 三、压缩感知算法(C…...

矩阵:Input-Output Interpretation of Matrices (中英双语)

矩阵的输入-输出解释&#xff1a;深入理解与应用 在线性代数中&#xff0c;矩阵与向量的乘积 ( y A x y Ax yAx ) 是一个极为重要的关系。通过这一公式&#xff0c;我们可以将矩阵 ( A A A ) 看作一个将输入向量 ( x x x ) 映射到输出向量 ( y y y ) 的线性变换。在这种…...

excel 使用vlook up找出两列中不同的内容

当使用 VLOOKUP 函数时&#xff0c;您可以将其用于比较两列的内容。假设您要比较 A 列和 B 列的内容&#xff0c;并将结果显示在 C 列&#xff0c;您可以在 C1 单元格中输入以下公式&#xff1a; 这个公式将在 B 列中的每个单元格中查找是否存在于 A 列中。如果在 A 列中找不到…...

YoloV8改进策略:Head改进|DynamicHead,利用注意力机制统一目标检测头部|即插即用

摘要 论文介绍 本文介绍了一种名为DynamicHead的模块,该模块旨在通过注意力机制统一目标检测头部,以提升目标检测的性能。论文详细阐述了DynamicHead的工作原理,并通过实验证明了其在COCO基准测试上的有效性和效率。 创新点 DynamicHead模块的创新之处在于它首次尝试在一…...

两地的日出日落时间差为啥不相等

悟空去延吉玩耍&#xff0c;在下午4点多的时候发来一张照片&#xff0c;说&#xff0c;天已经黑了&#xff01;我赶紧地图上看了看&#xff0c;延吉居然和北京差了大约15度的经度差&#xff0c;那就是大约一小时的时差哦。次日我随便查了一下两地的日出日落时间&#xff0c;结果…...

Android Https和WebView

系统会提示说不安全&#xff0c;因为网站通过js就能调用你的android代码&#xff0c;如果你确认你的网站没用到JS的话就不要打开这个开关&#xff0c;如果用到了&#xff0c;就添加一个注解忽略它就行了。 后来就使用我们公司的网站了&#xff0c;发现也出不来&#xff0c;后来…...

2.5.1 文件管理基本概念

文章目录 文件文件系统文件分类 文件 文件&#xff1a;具有符号名&#xff0c;逻辑上有完整意义的一组相关信息的集合。 文件包含文件体、文件说明两部分。文件体存储文件的真实内容&#xff0c;文件说明存放操作系统管理文件所用的信息。 文件说明包含文件名、内部标识、类型、…...

在 PowerShell 中优雅地显示 Python 虚拟环境

在使用 Python 进行开发时&#xff0c;虚拟环境管理是一个非常重要的部分。无论是使用 venv 还是 conda&#xff0c;我们都希望能够清晰地看到当前所处的虚拟环境。本文将介绍如何在 PowerShell 中配置提示符&#xff0c;使其能够优雅地显示不同类型的 Python 虚拟环境。 问题…...

K8S Ingress 服务配置步骤说明

部署Pod服务 分别使用kubectl run和kubectl apply 部署nginx和tomcat服务 # 快速启动一个nginx服务 kubectl run my-nginx --imagenginx --port80# 使用yaml创建tomcat服务 kubectl apply -f my-tomcat.yamlmy-tomcat.yaml apiVersion: apps/v1 kind: Deployment metadata:n…...

观察者模式(sigslot in C++)

大家&#xff0c;我是东风&#xff0c;今天抽点时间整理一下我很久前关注的一个不错的库&#xff0c;可以支持我们在使用标准C的时候使用信号槽机制进行观察者模式设计&#xff0c;sigslot 官网&#xff1a; http://sigslot.sourceforge.net/ 本文较为详尽探讨了一种观察者模…...