【电商搜索】文档的信息论生成聚类
【电商搜索】文档的信息论生成聚类
目录
文章目录
- 【电商搜索】文档的信息论生成聚类
- 目录
- 文章信息
- 概览
- 研究背景
- 技术挑战
- 如何破局
- 技术应用
- 主要相关工作与参考文献
- 后续优化方向
- 后记
文章信息

https://arxiv.org/pdf/2412.13534
概览
本文提出了一种基于信息论的生成聚类(Generative Clustering, GC)方法,用于对文档集合进行聚类。该方法不直接对原始文档进行聚类,而是利用大型语言模型(LLMs)生成的文本来代表原始文档,从而进行聚类。这种方法的核心在于利用LLMs提供的概率分布,通过KL散度在信息论层面严格定义文档间的相似性。实验结果表明,GC方法在多个数据集上取得了优于现有聚类方法的性能,尤其在生成式文档检索(Generative Document Retrieval, GDR)应用中,显著提高了检索准确率。
研究背景
文档聚类是数据科学中的一个基础问题,传统方法依赖于文档的表示,如词袋模型、TF-IDF和主题模型等。随着文本表示学习技术的进步,尤其是BERT等预训练模型的出现,聚类性能得到了显著提升。然而,这些方法可能无法完全捕捉文本中的深层知识,因为它们受限于固定的向量输出。相比之下,生成式模型如GPT-4能够通过自回归文本来处理复杂推理,但其在聚类中的应用尚未充分探索。
技术挑战
在文档聚类领域,挑战主要来自于如何有效地表示文档以捕捉其深层语义信息,并在此基础上进行有效的聚类。传统方法如词袋模型在表示时忽略了文档中的复杂依赖关系,而基于深度学习的嵌入方法虽然能够捕捉上下文信息,但仍然受限于固定长度的向量输出。此外,如何精确地评估文档间相似性也是一个技术难题。
如何破局
本文提出的GC方法通过以下步骤解决上述挑战:
- 生成式聚类:使用LLMs生成文本来代表原始文档,从而在更丰富的表示空间中捕捉文档信息。
- 信息论聚类:基于LLMs生成的文本,通过KL散度严格定义文档间的相似性,并进行聚类。
- 重要性采样:提出一种新的聚类算法,使用重要性采样来估计KL散度,从而在无限维空间中进行聚类。

技术应用
实验设置包括在四个文档聚类数据集上的评估,以及在生成式文档检索中的应用。GC方法在所有数据集上均取得了优于现有方法的性能,尤其在MS Marco Lite数据集上,GC方法在检索准确率上取得了高达36%的改进。这表明GC方法不仅在聚类任务上有效,也能显著提升相关应用的性能。

主要相关工作与参考文献
相关工作主要涉及文档聚类、生成式语言模型和信息论聚类。文档聚类方面,传统方法依赖于文档的向量表示,而近期的研究开始探索预训练模型在聚类中的应用。生成式语言模型方面,研究者们探索了GPT等模型在文本生成任务中的应用,但将其用于聚类任务的研究还相对较少。信息论聚类方面,研究者们使用KL散度等度量作为优化目标,但这些方法在连续空间中需要密度估计,限制了其应用范围。本文提出的GC方法在这些领域提供了新的视角和解决方案。
后续优化方向
未来的研究可以从以下几个方向进行优化:
- 模型微调:探索如何对LLMs进行微调以更好地适应聚类任务。
- 计算复杂性:优化算法以降低计算复杂性,尤其是在处理大规模数据集时。
- 鲁棒性分析:进一步分析GC方法对于不同数据集和不同数量聚类中心的鲁棒性。
- 应用拓展:将GC方法应用于更多的NLP任务和领域,如图像聚类、多模态数据聚类等。
后记
如果您对我的博客内容感兴趣,欢迎三连击 ( 点赞、收藏和关注 )和留下您的评论,我将持续为您带来计算机人工智能前沿技术(尤其是AI相关的大语言模型,深度学习和计算机视觉相关方向)最新学术论文及工程实践方面的内容分享,助力您更快更准更系统地了解 AI前沿技术。
相关文章:
【电商搜索】文档的信息论生成聚类
【电商搜索】文档的信息论生成聚类 目录 文章目录 【电商搜索】文档的信息论生成聚类目录文章信息概览研究背景技术挑战如何破局技术应用主要相关工作与参考文献后续优化方向 后记 文章信息 https://arxiv.org/pdf/2412.13534 概览 本文提出了一种基于信息论的生成聚类&#…...
在福昕(pdf)阅读器中导航到上次阅读页面的方法
文章目录 在福昕(pdf)阅读器中导航到上次阅读页面的方法概述笔记用书签的方法来导航用导航按钮的方法来导航 备注END 在福昕(pdf)阅读器中导航到上次阅读页面的方法 概述 喜欢用福昕(pdf)阅读器来看pdf文件。 但是有个小问题困扰了我好久。 e.g. 300页的pdf看了一半ÿ…...
基于Springboot的数字科技风险报告管理系统
博主介绍:java高级开发,从事互联网行业六年,熟悉各种主流语言,精通java、python、php、爬虫、web开发,已经做了多年的设计程序开发,开发过上千套设计程序,没有什么华丽的语言,只有实…...
【最后203篇系列】001 - 2024回顾
说明 最早在CSDN上写文章有两个目的: 1 自己梳理知识,以备日后查用2 曾经从别人的文章中得到过帮助,所以也希望能给人帮助 所以在这个过程中,我的文章基本上完全是原创,也非常强调落地与工程化。在不断写作的过程中…...
量子退火与机器学习(1):少量数据求解未知QUBO矩阵,以少见多
文章目录 前言ー、复习QUBO:中药配伍的复杂性1.QUBO 的介入:寻找最佳药材组合 二、难题:QUBO矩阵未知的问题1.为什么这么难? 三、稀疏建模(Sparse Modeling)1. 欠定系统中的稀疏解2. L1和L2的选择: 三、压缩感知算法(C…...
矩阵:Input-Output Interpretation of Matrices (中英双语)
矩阵的输入-输出解释:深入理解与应用 在线性代数中,矩阵与向量的乘积 ( y A x y Ax yAx ) 是一个极为重要的关系。通过这一公式,我们可以将矩阵 ( A A A ) 看作一个将输入向量 ( x x x ) 映射到输出向量 ( y y y ) 的线性变换。在这种…...
excel 使用vlook up找出两列中不同的内容
当使用 VLOOKUP 函数时,您可以将其用于比较两列的内容。假设您要比较 A 列和 B 列的内容,并将结果显示在 C 列,您可以在 C1 单元格中输入以下公式: 这个公式将在 B 列中的每个单元格中查找是否存在于 A 列中。如果在 A 列中找不到…...
YoloV8改进策略:Head改进|DynamicHead,利用注意力机制统一目标检测头部|即插即用
摘要 论文介绍 本文介绍了一种名为DynamicHead的模块,该模块旨在通过注意力机制统一目标检测头部,以提升目标检测的性能。论文详细阐述了DynamicHead的工作原理,并通过实验证明了其在COCO基准测试上的有效性和效率。 创新点 DynamicHead模块的创新之处在于它首次尝试在一…...
两地的日出日落时间差为啥不相等
悟空去延吉玩耍,在下午4点多的时候发来一张照片,说,天已经黑了!我赶紧地图上看了看,延吉居然和北京差了大约15度的经度差,那就是大约一小时的时差哦。次日我随便查了一下两地的日出日落时间,结果…...
Android Https和WebView
系统会提示说不安全,因为网站通过js就能调用你的android代码,如果你确认你的网站没用到JS的话就不要打开这个开关,如果用到了,就添加一个注解忽略它就行了。 后来就使用我们公司的网站了,发现也出不来,后来…...
2.5.1 文件管理基本概念
文章目录 文件文件系统文件分类 文件 文件:具有符号名,逻辑上有完整意义的一组相关信息的集合。 文件包含文件体、文件说明两部分。文件体存储文件的真实内容,文件说明存放操作系统管理文件所用的信息。 文件说明包含文件名、内部标识、类型、…...
在 PowerShell 中优雅地显示 Python 虚拟环境
在使用 Python 进行开发时,虚拟环境管理是一个非常重要的部分。无论是使用 venv 还是 conda,我们都希望能够清晰地看到当前所处的虚拟环境。本文将介绍如何在 PowerShell 中配置提示符,使其能够优雅地显示不同类型的 Python 虚拟环境。 问题…...
K8S Ingress 服务配置步骤说明
部署Pod服务 分别使用kubectl run和kubectl apply 部署nginx和tomcat服务 # 快速启动一个nginx服务 kubectl run my-nginx --imagenginx --port80# 使用yaml创建tomcat服务 kubectl apply -f my-tomcat.yamlmy-tomcat.yaml apiVersion: apps/v1 kind: Deployment metadata:n…...
观察者模式(sigslot in C++)
大家,我是东风,今天抽点时间整理一下我很久前关注的一个不错的库,可以支持我们在使用标准C的时候使用信号槽机制进行观察者模式设计,sigslot 官网: http://sigslot.sourceforge.net/ 本文较为详尽探讨了一种观察者模…...
python使用pip进行库的下载
前言 现如今有太多的python编译软件,其库的下载也是五花八门,但在作者看来,无论是哪种方法都是万变不离其宗,即pip下载。 pip是python的包管理工具,无论你是用的什么python软件,都可以用pip进行库的下载。 …...
C#(委托)
一、基本定义 在C#中,委托(Delegate)是一种引用类型,它用于封装一个方法(具有特定的参数列表和返回类型)。可以把委托想象成一个能存储方法的变量,这个变量能够像调用普通方法一样来调用它所存…...
《点点之歌》“意外”诞生记
世界是“点点”的,“点点”是世界的。 (笔记模板由python脚本于2024年12月23日 19:28:25创建,本篇笔记适合喜欢诗文的coder翻阅) 【学习的细节是欢悦的历程】 Python 官网:https://www.python.org/ Free:大咖免费“圣经”教程《 …...
ue5 pcg(程序内容生成)真的简单方便,就5个节点
总结: 前情提示 鼠标单击右键平移节点 1.编辑-》插件-》procedural->勾选两个插件 2.右键-》pcg图表-》拖拽进入场景 3.先看点point 右键-》调试(快捷键d)->右侧设置粒子数 3.1调整粒子数 可以在右侧输入框,使用加减乘除 4.1 表面采样器 …...
32岁前端干了8年,是继续做前端开发,还是转其它工作
前端发展有瓶颈,变来变去都是那一套,只是换了框架换了环境。换了框架后又得去学习,虽然很快上手,但是那些刚毕业的也很快上手了,入门门槛越来越低,想转行或继续卷,该如何破圈 这是一位网友的自述…...
【演化博弈】期望收益函数公式、复制动态方程——化简功能技巧
期望化简 在演化博弈论的研究中,期望收益函数和复制动态方程是核心工具。化简这些公式的功能技巧具有以下几个重要作用: 提高公式的可读性和理解度 复杂的数学表达式可能让人感到困惑。通过化简,公式变得更加简单和易读,使研究者…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...
