当前位置: 首页 > news >正文

n阶Legendre多项式正交性的证明

前言

在《n次Legendre(勒让德)多项式在区间(-1, 1)上根的分布及证明》这篇文章中,我们阐述了Legendre多项式在 [ − 1 , 1 ] [-1,1] [1,1]上的根分布情况并给出了证明。本文将证明Legendre多项式在 [ − 1 , 1 ] [-1,1] [1,1]上的正交性质。

正交多项式的定义

f n ( x ) , n ∈ N f_n(x),n\in \mathbb N fn(x),nN是定义在 [ a , b ] [a,b] [a,b]上的一列函数,若对于任意的自然数 m , n m,n m,n f m ( x ) f n ( x ) f_m(x)f_n(x) fm(x)fn(x) [ a , b ] [a,b] [a,b]上可积,且满足:
∫ a b f m ( x ) f n ( x ) d x = { 0 , m ≠ n ∫ a b f n 2 ( x ) d x > 0 , m = n \int_{a}^{b}f_m(x)f_n(x) \mathrm{d}x=\begin{cases}0, &m\neq n \\\displaystyle \int_{a}^{b} f^2_n(x)\mathrm{d}x>0, &m=n\end{cases} abfm(x)fn(x)dx= 0,abfn2(x)dx>0,m=nm=n
则称 { f n ( x ) } \{f_n(x)\} {fn(x)} [ a , b ] [a,b] [a,b]上的正交函数列。当 { f n ( x ) } \{f_n(x)\} {fn(x)} n n n次多项式时,则称 { f n ( x ) } \{f_n(x)\} {fn(x)} [ a , b ] [a,b] [a,b]上的正交多项式列

n阶Legendre多项式在 [ − 1 , 1 ] [-1,1] [1,1]上的正交性证明

n次Legendre多项式的定义如下:
p n ( x ) = 1 2 n n ! d n d x n ( x 2 − 1 ) n , n ∈ N p_{n}(x)=\frac{1}{2^n n!}\frac{\mathrm d^n}{\mathrm{d} x^n}(x^2-1)^n, n\in \mathbb{N} pn(x)=2nn!1dxndn(x21)n,nN

不妨设 n ≥ m n \geq m nm。首先构造如下函数

I m n = m ! n ! 2 m 2 n ∫ − 1 1 p m ( x ) p n ( x ) d x = ∫ − 1 1 d m d x m ( x 2 − 1 ) m ⋅ d n d x n ( x 2 − 1 ) n d x \begin{equation} I_{mn}=m!n!2^m2^n\int_{-1}^{1}p_{m}(x)p_{n}(x) \mathrm{d}x =\int_{-1}^{1}\frac{\mathrm d^m}{\mathrm{d} x^m}(x^2-1)^m \cdot \frac{\mathrm d^n}{\mathrm{d} x^n}(x^2-1)^n \mathrm{d}x \end{equation} Imn=m!n!2m2n11pm(x)pn(x)dx=11dxmdm(x21)mdxndn(x21)ndx

用分部积分法对 ( 1 ) (1) (1)式进行积分,可以得到

I m n = ∫ − 1 1 d m d x m ( x 2 − 1 ) m d ( d n − 1 d x n − 1 ( x 2 − 1 ) n ) = d m d x m ( x 2 − 1 ) m ⋅ d n − 1 d x n − 1 ( x 2 − 1 ) n ∣ − 1 1 − ∫ − 1 1 d n − 1 d x n − 1 ( x 2 − 1 ) n ⋅ d m + 1 d x m + 1 ( x 2 − 1 ) m d x \begin{equation} \begin{align} I_{mn} &=\int_{-1}^{1}\frac{\mathrm d^m}{\mathrm{d} x^m}(x^2-1)^m \mathrm{d}(\frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n) \nonumber \\ &=\left.\frac{\mathrm d^m}{\mathrm{d} x^m}(x^2-1)^m \cdot \frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n \right |_{-1}^{1} \nonumber -\int_{-1}^{1}\frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n \cdot \frac{\mathrm d^{m+1}}{\mathrm{d} x^{m+1}}(x^2-1)^m\mathrm{d}x \nonumber \\ \end{align} \end{equation} Imn=11dxmdm(x21)md(dxn1dn1(x21)n)=dxmdm(x21)mdxn1dn1(x21)n 1111dxn1dn1(x21)ndxm+1dm+1(x21)mdx

这里引用《n次Legendre(勒让德)多项式在区间(-1, 1)上根的分布及证明》这篇文章里的结论:

k < n k<n k<n时, f k ( x ) = [ ( x 2 − 1 ) n ] ( k ) f_{k}(x)=[(x^2-1)^n]^{(k)} fk(x)=[(x21)n](k)的每一项都包含因式 x − 1 x-1 x1 x + 1 x+1 x+1

因此 d m d x m ( x 2 − 1 ) m ⋅ d n − 1 d x n − 1 ( x 2 − 1 ) n ∣ − 1 1 = 0 \displaystyle \left.\frac{\mathrm d^m}{\mathrm{d} x^m}(x^2-1)^m \cdot \frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n \right |_{-1}^{1}=0 dxmdm(x21)mdxn1dn1(x21)n 11=0。于是 ( 2 ) (2) (2)式可以写成:

I m n = − ∫ − 1 1 d n − 1 d x n − 1 ( x 2 − 1 ) n ⋅ d m + 1 d x m + 1 ( x 2 − 1 ) m d x \begin{equation} I_{mn}=-\int_{-1}^{1}\frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n \cdot \frac{\mathrm d^{m+1}}{\mathrm{d} x^{m+1}}(x^2-1)^m\mathrm{d}x \end{equation} Imn=11dxn1dn1(x21)ndxm+1dm+1(x21)mdx

继续用分部积分法对 ( 3 ) (3) (3)式重复上述过程,执行 n n n次后,得到

I m n = ( − 1 ) n ∫ − 1 1 d m + n d x m + n ( x 2 − 1 ) m ⋅ ( x 2 − 1 ) n d x \begin{equation} I_{mn}=(-1)^n\int_{-1}^{1} \frac{\mathrm d^{m+n}}{\mathrm{d} x^{m+n}}(x^2-1)^m \cdot (x^2-1)^n \mathrm{d}x \end{equation} Imn=(1)n11dxm+ndm+n(x21)m(x21)ndx

下面分情况讨论。

  1. n > m n>m n>m d m + n d x m + n ( x 2 − 1 ) m = 0 \displaystyle \frac{\mathrm d^{m+n}}{\mathrm{d} x^{m+n}}(x^2-1)^m =0 dxm+ndm+n(x21)m=0,即 I m n = 0 I_{mn}=0 Imn=0,因此有

∫ − 1 1 p m ( x ) p n ( x ) d x = 0 \begin{equation} \int_{-1}^{1}p_{m}(x)p_{n}(x) \mathrm{d}x =0 \end{equation} 11pm(x)pn(x)dx=0

  1. n = m n=m n=m,根据高阶导数的Leibniz公式可以得到:
    d m + n d x m + n ( x 2 − 1 ) m = ∑ i = 0 2 n C 2 n i [ ( x + 1 ) n ] ( i ) [ ( x − 1 ) n ] ( 2 n − i ) = C 2 n n [ ( x + 1 ) n ] ( n ) [ ( x − 1 ) n ] ( n ) = ( 2 n ) ! \begin{equation} \displaystyle \frac{\mathrm d^{m+n}}{\mathrm{d} x^{m+n}}(x^2-1)^m =\displaystyle \sum_{i=0}^{2n} C_{2n}^{i}[(x+1)^n]^{(i)}[(x-1)^n]^{(2n-i)}=C_{2n}^{n}[(x+1)^n]^{(n)}[(x-1)^n]^{(n)}=(2n)! \end{equation} dxm+ndm+n(x21)m=i=02nC2ni[(x+1)n](i)[(x1)n](2ni)=C2nn[(x+1)n](n)[(x1)n](n)=(2n)!

( 6 ) (6) (6)式代入 ( 4 ) (4) (4)式,不断使用分部积分法后可以得到

I n n = ( 2 n ) ! ( − 1 ) n ∫ − 1 1 ( x − 1 ) n ( x + 1 ) n d x = ( 2 n ) ! ∫ − 1 1 ( 1 − x ) n d ( ( 1 + x ) n + 1 n + 1 ) = ( 2 n ) ! n + 1 ( 1 − x ) n ( 1 + x ) n + 1 ∣ − 1 1 + ( 2 n ) ! n n + 1 ∫ − 1 1 ( 1 − x ) n − 1 ( 1 + x ) n + 1 d x = ( 2 n ) ! n n + 1 ∫ − 1 1 ( 1 − x ) n − 1 ( 1 + x ) n + 1 d x = ( 2 n ) ! n ( n − 1 ) ( n + 1 ) ( n + 2 ) ∫ − 1 1 ( 1 − x ) n − 2 ( 1 + x ) n + 2 d x = . . . = ( n ! ) 2 ∫ − 1 1 ( 1 + x ) 2 n d x = ( n ! ) 2 2 2 n + 1 2 n + 1 \begin{equation} \begin{align} I_{nn} &= (2n)!(-1)^n\int_{-1}^{1} (x-1)^n (x+1)^n \mathrm{d}x \nonumber \\ &=(2n)!\int_{-1}^{1}(1-x)^n \mathrm{d}\left(\dfrac{(1+x)^{n+1}} {n+1}\right)\nonumber \\ &=\left.\dfrac{(2n)!}{n+1}(1-x)^n(1+x)^{n+1}\right|_{-1}^{1}+\dfrac{(2n)!n}{n+1}\int_{-1}^{1}(1-x)^{n-1}(1+x)^{n+1}\mathrm{d}x \nonumber \\ &=\dfrac{(2n)!n}{n+1}\int_{-1}^{1}(1-x)^{n-1}(1+x)^{n+1}\mathrm{d}x \nonumber \\ &=\dfrac{(2n)!n(n-1)}{(n+1)(n+2)}\int_{-1}^{1}(1-x)^{n-2}(1+x)^{n+2}\mathrm{d}x \nonumber \\ &=... \nonumber \\ &=(n!)^2\int_{-1}^{1}(1+x)^{2n}\mathrm{d}x =\dfrac{(n!)^2 2^{2n+1}}{2n+1}\nonumber \\ \end{align} \end{equation} Inn=(2n)!(1)n11(x1)n(x+1)ndx=(2n)!11(1x)nd(n+1(1+x)n+1)=n+1(2n)!(1x)n(1+x)n+1 11+n+1(2n)!n11(1x)n1(1+x)n+1dx=n+1(2n)!n11(1x)n1(1+x)n+1dx=(n+1)(n+2)(2n)!n(n1)11(1x)n2(1+x)n+2dx=...=(n!)211(1+x)2ndx=2n+1(n!)222n+1

( 7 ) (7) (7)式代入 ( 1 ) (1) (1)式,可得

∫ − 1 1 p m ( x ) p n ( x ) d x = I n n ( n ! ) 2 2 n = 2 2 n + 1 > 0 \begin{equation} \int_{-1}^{1}p_{m}(x)p_{n}(x) \mathrm{d}x =\dfrac{I_{nn}}{(n!)2^{2n}}=\dfrac{2}{2n+1}>0 \end{equation} 11pm(x)pn(x)dx=(n!)22nInn=2n+12>0

结合 ( 5 ) , ( 8 ) (5),(8) (5),(8)式,我们得到了如下结论

∫ − 1 1 p m ( x ) p n ( x ) d x = { 0 , m ≠ n 2 2 n + 1 > 0 , m = n \int_{-1}^{1}p_{m}(x)p_{n}(x) \mathrm{d}x=\begin{cases}0, &m\neq n \\\displaystyle\dfrac{2}{2n+1}>0, &m=n\end{cases} 11pm(x)pn(x)dx= 0,2n+12>0,m=nm=n

根据定义,我们得到 n n n次Legendre多项式列 { p n ( x ) } \{p_n(x)\} {pn(x)} [ − 1 , 1 ] [-1,1] [1,1]上的正交多项式列。证毕。

相关文章:

n阶Legendre多项式正交性的证明

前言 在《n次Legendre(勒让德)多项式在区间(-1, 1)上根的分布及证明》这篇文章中&#xff0c;我们阐述了Legendre多项式在 [ − 1 , 1 ] [-1,1] [−1,1]上的根分布情况并给出了证明。本文将证明Legendre多项式在 [ − 1 , 1 ] [-1,1] [−1,1]上的正交性质。 正交多项式的定义…...

HarmonyOS NEXT - Dialog 和完全自定义弹框

demo 地址: https://github.com/iotjin/JhHarmonyDemo 组件对应代码实现地址 代码不定时更新&#xff0c;请前往github查看最新代码 在demo中这些组件和工具类都通过module实现了&#xff0c;具体可以参考HarmonyOS NEXT - 通过 module 模块化引用公共组件和utils HarmonyOS NE…...

内容与资讯API优质清单

作为开发者&#xff0c;拥有一套API合集是必不可少的。这个开发者必备的API合集汇集了各种实用的API资源&#xff0c;为你的开发工作提供了强大的支持&#xff01;无论你是在构建网站、开发应用还是进行数据分析&#xff0c;这个合集都能满足你的需求。你可以通过这些免费API获…...

开源 JS PDF 库比较

原文查看&#xff1a;开源JavaScript PDF Library对比 对于需要高性能、复杂功能或强大支持处理复杂 PDF 的项目&#xff0c;建议选择商业​​ PDF 库, 如ComPDFKit for Web。但是&#xff0c;如果您的目标只是在 Web 应用程序中显示 PDF&#xff0c;则可以使用几个可靠的开源…...

AnaPico信号源在通信测试中的应用案例

AnaPico信号源在通信测试中的应用案例广泛&#xff0c;涉及多种通信技术和测试需求。以下是一些具体的应用实例&#xff1a; 1. APPH系列信号源分析仪&#xff08;相位噪声分析仪&#xff09; APPH系列是一款高性能相位噪声分析仪和VCO测试仪&#xff0c;其不同型号的频率范围…...

《智启新材:人工智能重塑分子结构设计蓝图》

在当今科技飞速发展的时代&#xff0c;新材料的研发宛如一场激烈的竞赛&#xff0c;而人工智能&#xff08;AI&#xff09;作为一匹黑马&#xff0c;正以前所未有的速度和力量驰骋于这片赛场&#xff0c;为新材料的分子结构设计带来了革命性的突破&#xff0c;成为推动行业发展…...

进阶岛-L2G5000

茴香豆&#xff1a;企业级知识库问答工具 茴香豆本地标准版搭建 环境搭建 安装茴香豆 知识库创建 测试知识助手 Gradio UI 界面测试...

单点登录平台Casdoor搭建与使用,集成gitlab同步创建删除账号

一&#xff0c;简介 一般来说&#xff0c;公司有很多系统使用&#xff0c;为了实现统一的用户名管理和登录所有系统&#xff08;如 GitLab、Harbor 等&#xff09;&#xff0c;并在员工离职时只需删除一个主账号即可实现权限清除&#xff0c;可以采用 单点登录 (SSO) 和 集中式…...

PaddlePaddle飞桨Linux系统Docker版安装

PaddlePaddle飞桨Linux系统Docker版安装 最近学习和了解PP飞桨&#xff0c;一切从安装开始。官网的安装教程很详细&#xff1a; https://www.paddlepaddle.org.cn/install/quick?docurl/documentation/docs/zh/install/docker/linux-docker.html 记录我在安装过程中遇到的问题…...

一款基于.NET开发的简易高效的文件转换器

前言 今天大姚给大家分享一款基于.NET开发的免费&#xff08;GPL-3.0 license&#xff09;、简易、高效的文件转换器&#xff0c;允许用户通过Windows资源管理器的上下文菜单来转换和压缩一个或多个文件&#xff1a;FileConverter。 使用技术栈 ffmpeg&#xff1a;作为文件转换…...

Spring Boot教程之三十一:入门 Web

Spring Boot – 入门 Web 如今&#xff0c;大多数应用程序都需要模型-视图-控制器(MVC) 架构来满足各种需求&#xff0c;例如处理用户数据、提高应用程序效率、为应用程序提供动态特性。它主要用于构建桌面图形用户界面 (GUI)&#xff0c;但现在越来越流行用于构建基于 Web 的…...

青少年编程与数学 02-004 Go语言Web编程 20课题、单元测试

青少年编程与数学 02-004 Go语言Web编程 20课题、单元测试 一、单元测试&#xff08;Unit Testing&#xff09;二、集成测试&#xff08;Integration Testing&#xff09;三、区别四、Go Web单元测试使用testing包使用testify框架使用GoConvey框架 五、应用示例步骤 1: 创建HTT…...

概率论 期末 笔记

第一章 随机事件及其概率 利用“四大公式”求事件概率 全概率公式与贝叶斯公式 伯努利概型求概率 习题 推导 一维随机变量及其分布 离散型随机变量&#xff08;R.V&#xff09;求分布律 利用常见离散型分布求概率 连续型R.V相关计算 利用常见连续型分布的计算 均匀分布 正态…...

Typesense:开源的高速搜索引擎

在当今数据驱动的世界中&#xff0c;高效、快速且智能的搜索能力是任何应用程序和网站成功的关键因素之一。无论是电商平台、内容管理系统还是社交媒体&#xff0c;用户都希望能够迅速找到所需信息。Typesense&#xff0c;作为一款优秀的开源搜索引擎&#xff0c;旨在通过其卓越…...

【vue】圆环呼吸灯闪烁效果(模拟扭蛋机出口处灯光)

效果图先发&#xff1a; 页面部分&#xff1a; <div ref"round" class"round"><div class"light" ref"light"/><div class"box"></div></div>js部分(控制圆环生成&#xff09;; setRound…...

飞牛 fnos 使用docker部署 Watchtower 自动更新 Docker 容器

Watchtower 简介 Watchtower 是一款开源的 Docker 容器管理工具&#xff0c;主要功能为自动更新运行中的 Docker 容器&#xff0c;支持自动拉取镜像并更新容器、配置邮件通知以及定时执行容器更新任务。 用 compose 搭建 Watchtower 的步骤 新建文件夹&#xff1a;在任意位置…...

《信管通低代码信息管理系统开发平台》Linux环境安装说明

1 简介 信管通低代码信息管理系统应用平台提供多环境软件产品开发服务&#xff0c;包括单机、局域网和互联网。我们专注于适用国产硬件和操作系统应用软件开发应用。为事业单位和企业提供行业软件定制开发&#xff0c;满足其独特需求。无论是简单的应用还是复杂的系统&#xff…...

基于物联网的车辆定位和防盗报警系统(论文+源码)

1 系统概述 本文的主要内容是设计一个基于物联网的车辆定位和防盗报警系统&#xff0c;主要是利用STC89C52单片机来作为整体的核心控制元件&#xff0c;主要的核心控制模块主要由GSM通信模块&#xff0c;GPS定位模块&#xff0c;热释电红外检测模块&#xff0c;报警模块以及其他…...

京东零售数据可视化平台产品实践与思考

导读 本次分享题目为京东零售数据可视化平台产品实践与思考。 主要包括以下四个部分&#xff1a; 1. 平台产品能力介绍 2. 业务赋能案例分享 3. 平台建设挑战与展望 作者&#xff1a;梁臣 京东 数据产品架构师 01平台产品能力介绍 1. 产品矩阵 数据可视化产品是一种利用…...

Vue中使用a标签下载静态资源文件(比如excel、pdf等),纯前端操作

第一步&#xff0c;public文件夹下新建static文件夹存放静态资源 我存放了一个 .docx文件&#xff0c;当然&#xff0c;你可以存放pdf/word 等文件都可以。 第二步&#xff0c;模拟a标签下载 //html部分<el-button type"primary" plain click"download&quo…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...