当前位置: 首页 > news >正文

【自动驾驶】3 激光雷达③

5 激光雷达点云检测模型

🦋🦋🦋CenterPoint是Anchor‐Free的3D物体检测器,以点云作为输入,将三维物体在Bird‐View下的中心点作为关键点,基于关键点检测的方式回归物体的尺寸、方向和速度。相比于Anchor‐Based的3D物体检测器,CenterPoint不需要人为设定Anchor尺寸,面向物体尺寸多样不一的场景时,其精度表现更高,且简易的模型设计使其在性能上也表现更加高效🦋🦋🦋。

2287a445b2e84ad28c5e38fd4555f28c.jpg

💚论文题目:Center-based 3D Object Detection and Tracking(基于中心的3D物体检测和跟踪)

💜论文地址:https://arxiv.org/abs/2006.11275

💙代码地址:https://github.com/tianweiy/CenterPoint

【摘要】

3D物体在点云中通常表示为3D盒子。这种表示方法模仿了基于图像的2D边界框检测,但也带来了额外的挑战。3D世界中的物体并不遵循任何特定的方向,而基于框的检测器很难枚举所有方向或将轴对齐的包围框拟合到旋转的物体上。

💕💕💕在本文中,我们转而提出将3D物体表示、检测和跟踪为点。我们的框架CenterPoint首先使用关键点检测器检测物体的中心,然后回归到其他属性,包括3D大小、3D方向和速度。

🌸🌸🌸在第二阶段,它使用物体上的额外点特征来改进这些估计。在CenterPoint中,3D目标跟踪简化为贪婪的最近点对匹配。由此得到的检测与跟踪算法简单、高效、有效。

🦋🦋🦋CenterPoint在3D检测和跟踪的nuScenes基准上都取得了最先进的性能,单个模型的NDS和AMOTA分别为65.5和63.8。在Waymo公开数据集上,CenterPoint的表现大大超过了之前的所有单模型方法,并且在所有Lidar-only提交中排名第一。

下图1:我们提出了一个基于中心的框架来表示、检测和跟踪物体。

以前的基于锚点的方法使用轴对齐的锚点相对于自我车辆坐标。当车辆在直线道路上行驶时,基于锚点和我们的基于中心的方法都能够准确地检测出物体(顶部)。然而,在安全关键的左转(下转)期间,基于锚点的方法很难将轴对齐的边界框拟合到旋转的物体上。我们的基于中心的模型通过旋转不变的点精确地检测物体。

3f6b5af048c747279e461e713d8ba039.jpg

下图2:我们的Centerpoint框架概述。我们依赖一个标准的3D骨架,从Lidar点云中提取地图视图特征表示。然后,一个2D CNN架构的检测头找到目标中心,并使用中心特征回归到完整的3D边界框。该框预测用于在估计的三维包围框的每个面的三维中心处提取点特征,并将其传递到MLP中,以预测IoU指导的置信度评分和框回归精化。最好彩图观赏。

6af03818b57041d28ab79c2c3ca52a5b.jpg

下图3:CenterPoint对Waymo验证的示例定性结果。我们将原始点云显示为蓝色,将检测到的物体显示为绿色边界框,将边界框内的Lidar点显示为红色。最好彩图观赏。

54a499340a894442ac19a87b69d9bdf7.jpg

【结论】

提出了一种基于中心的,同时从Lidar点云中检测和跟踪三维目标的框架。我们的方法使用标准的3D点云编码器,在头部使用少量卷积层来产生鸟瞰热图和其他稠密的回归输出。检测是一种简单的细化局部峰值提取,跟踪是一种最近距离匹配。CenterPoint简单,接近实时,在Waymo和nuScenes基准测试集上达到了最先进的性能。

【扩展】

1 Tracking algorithm

6563e03b661b4f72935531edb8498ddc.jpg

2 CenterPoint

◎ 对输入的点云进行体素化(voxelization),也即将点云投影到pillar或者voxels中。

◎ 使用fully connection layer / 3d sparse convolution 提取pillar / voxels中的特征。

◎ 使用max pooling操作将pillar / voxels的特征“压缩”到BEV平面,获得BEV特征图。

◎ 使用Second Backbone和Second Neck提取BEV的特征。

◎ head部分。

1.采用anchor‐free的预测方式,直接预测目标的center位置。

2.每个不同的类别使用不同head进行预测。

3.预测内容。

内容包括:目标中心位置 heatmap、目标中心和所在像素左上角的偏移量 offset、目标的长宽高 、 目标center在激光雷达坐标系中的高度坐标 z、 目标在激光雷达坐标系中的旋转角 rot。

 

至此,本文分享的内容就结束了💕💕💕。

 

相关文章:

【自动驾驶】3 激光雷达③

5 激光雷达点云检测模型 🦋🦋🦋CenterPoint是Anchor‐Free的3D物体检测器,以点云作为输入,将三维物体在Bird‐View下的中心点作为关键点,基于关键点检测的方式回归物体的尺寸、方向和速度。相比于Anchor‐…...

Vue 3.5 编写 ref 时,自动插入.Value

如果是 Vue 3.2 ,那么可能用的是Volar...

从0到1实现一个RS蓝图系统-概念提出技术栈选型

请不要自我设限,真正好的人生态度,是现在就做,不等、不靠、不懒惰。 ——小野《改变力》 一、什么是蓝图? 蓝图(BluePrint) 是Epic Games 针对虚幻4引擎开发的可视化脚本语言。当你使用蓝图的时候,其实就是在编写代码…...

npm淘宝镜像

通过命令行配置npm的淘宝镜像源和官方镜像源,以及如何安装和使用cnpm来解决安装包卡顿或无法安装的问题。通过设置registry和disturl,配合清理缓存,可以优化npm的下载速度。 1、​官方默认镜像 npm config set registry https://registry.n…...

深入解析:Python中的决策树与随机森林

在这个数据驱动的时代,机器学习技术已经成为许多企业和研究机构不可或缺的一部分。其中,决策树和随机森林作为两种强大的算法,在分类和回归任务中表现尤为出色。本文将带领大家深入了解这两种算法在Python中的实现,从基础到实战&a…...

奇怪问题| Chrome 访问csdn 创作中心的时候报错: 服务超时,请稍后重试

Chrome 访问csdn 创作中心的时候报错: 服务超时,请稍后重试用无痕浏览器可以正常访问 关闭代理无效清缓存和Cookies无效。考虑无痕浏览器模式下插件不生效,尝试把chrome 插件也禁用,发现有效,是该扩展程序的缘故...

【Leetcode】1705. 吃苹果的最大数目

文章目录 题目思路代码复杂度分析时间复杂度空间复杂度 结果总结 题目 题目链接🔗 有一棵特殊的苹果树,一连 n n n 天,每天都可以长出若干个苹果。在第 i i i 天,树上会长出 a p p l e s [ i ] apples[i] apples[i] 个苹果&a…...

职业技能赛赛后心得

这是一位粉丝所要求的,也感谢这位粉丝对我的支持。 那么本篇文章我也是分成四个部分,来总结一下这次赛后心得。 赛中问题 那么这里的赛中问题不会只包含我所遇到的问题,也会包含赛中其他选手出现的问题。 那么首先我先说一下我在赛中遇到的…...

从AI换脸到篡改图像,合合信息如何提升视觉内容安全?

本文目录 引言一、AI“真假之战”下的发展现状与考验挑战1.1 视觉内容安全现状与技术分类1.2视觉内容安全企业1.3视觉内容安全领域挑战 二、开山之石:引领视觉内容安全的创新之路2.1合合内容安全系统2.2发起编制相关技术规范2.3参与篡改检测挑战赛 三、视觉内容安全…...

c# 实现一个简单的异常日志记录(异常迭代+分片+定时清理)+AOP Rougamo全局注入

1. 日志目录和文件管理 日志目录:日志文件存储在 ./Exceptions 目录下。日志文件命名:日志文件的命名格式为 yyyy_MM_dd.log,表示当天的日期。如果当天的日志文件大小超过 maxFileSizeBytes(3KB),则会创建…...

webrtc学习----前端推流拉流,局域网socket版,一对多

提示:局域网socket版,一对多 文章目录 [TOC](文章目录) 前言一、教程二、webrtc工作流程三、推流端四、拉流五、socket服务六、效果七、备注总结 前言 WebRTC(Web Real-Time Communication)是一种实时通讯技术,允许网…...

美国加州房价数据分析01

1.项目简介 本数据分析项目目的是分析美国加州房价数据,预测房价中值。 环境要求: ancondajupyter notebookpython3.10.10 虚拟环境: pandas 2.1.1 numpy 1.26.1 matplotlib 3.8.0 scikit-learn1.3.1 2. 导入并探索数据集 通用的数据分析…...

用Python开启人工智能之旅(四)深度学习的框架和使用方法

第四部分:深度学习的框架和使用方法 用Python开启人工智能之旅(一)Python简介与安装 用Python开启人工智能之旅(二)Python基础 用Python开启人工智能之旅(三)常用的机器学习算法与实现 用Pyt…...

两分钟解决:vscode卡在设置SSH主机,VS Code-正在本地初始化VSCode服务器

问题原因 remote-ssh还是有一些bug的,在跟新之后可能会一直加载初始化SSH主机解决方案 1.打开终端2.登录链接vscode的账号,到家目录下3.找到 .vscode-server文件,删掉这个文件4.重启 vscode 就没问题了...

信号仿真高级工程师面试题

信号仿真高级工程师面试题可能涵盖多个方面,旨在全面评估应聘者的专业知识、技能水平、实践经验和问题解决能力。以下是一些可能的面试题及其简要解析: 一、专业知识与技能 描述你对信号仿真的理解 考察点:对信号仿真基本概念、原理及应用的掌握程度。参考答案:信号仿真是…...

循环和迭代

从更高层次的思维角度来看迭代和循环的区别: 哲学层面: 迭代体现了"螺旋上升"的发展理念,每次迭代都在前一次的基础上有所提升和改进 循环体现了"周而复始"的概念,强调重复相同的过程 思维方式&#xff1a…...

一个简单封装的的nodejs缓存对象

我们在日常编码中,经常会用到缓存,而一个有效的缓存管理,也是大家必不可少的工具。而nodejs没有内置专用的缓存对象,并且由于js的作用域链的原因,很多变量使用起来容易出错,如果用一个通用的缓存管理起来&a…...

【Rust自学】5.3. struct的方法(Method)

喜欢的话别忘了点赞、收藏加关注哦,对接下来的教程有兴趣的可以关注专栏。谢谢喵!(・ω・) 5.3.1. 什么是方法(Method) 方法和函数类似,也是用fn关键字进行声明,方法也有名称,也有参数&#xff…...

ChatGPT之父:奥尔特曼

奥尔特曼 阿尔特曼一般指萨姆奥尔特曼,他是OpenAI的联合创始人兼首席执行官,被称为“ChatGPT之父”.以下是其具体介绍: 个人经历 1985年4月22日出生于美国芝加哥,8岁学会编程,9岁拥有电脑,对信息技术和互联网产生兴趣.高中就读于约翰巴勒斯中学,后进入斯坦福大学主修计…...

如何在谷歌浏览器中设置桌面快捷方式

在日常使用电脑时,反复在浏览器中输入经常访问的网址不仅耗时,而且降低了工作效率。为了解决这一问题,我们可以通过在主屏幕上创建谷歌浏览器的快捷方式来简化操作。本文将详细介绍如何在Windows和Mac系统中实现这一功能。 一、步骤概述 1. …...

systemverilog中的priority if

1 基本概念 在 SystemVerilog 中,priority - if是一种条件判断结构。它和普通的if - else语句类似,但在条件评估和错误检查方面有自己的特点,主要用于按顺序评估多个条件,并且对不符合预期的情况进行报错。报错如下两点 当所有条件…...

图像处理-Ch2-空间域的图像增强

Ch2 空间域的图像增强 文章目录 Ch2 空间域的图像增强Background灰度变换函数(Gray-level Transformation)对数变换(Logarithmic)幂律变换(Power-Law)分段线性变换函数(Piecewise-Linear)对比度拉伸(Contrast-Stretching)灰度级分层(Gray-level Slicing) 直方图处理(Histogram …...

css 编写注意-1-命名约定

编写按照可维护性、性能和可读性规则: 1.代码组织与结构​​​​​​​ 层次清晰:使用模块化的结构,将样式分块组织。命名规范:采用统一的命名规则(如 BEM、SMACSS)以增强可读性。​​​​​​​ /* BEM …...

虚幻引擎反射机制

在虚幻引擎中,反射系统是一种强大的机制,它允许开发者和引擎本身在运行时获取并操作类、对象、属性和方法的元信息。这个系统是基于UObject(Unreal Engine中所有支持反射的对象的基类)构建的,为游戏开发提供了极大的灵…...

Knife4j Swagger

1. 依赖 <dependency><groupId>com.github.xiaoymin</groupId><artifactId>knife4j-spring-boot-starter</artifactId><version>3.0.3</version></dependency>2. 配置 第二步配置完成就可以访问&#xff1a;http://localhost…...

Xcode 16 编译弹窗问题、编译通过无法,编译通过打包等问题汇总

问题1&#xff1a;打包的过程中不断提示 &#xff1a;codesign 想要访问你的钥匙串中的密钥“develop 或者distribution 证书” 解决&#xff1a;打开钥匙串&#xff0c;点击证书---显示简介---信任----改为始终信任 &#xff08;记住 &#xff1a;不能只修改钥匙的显示简介的…...

卷积神经网络入门指南:从原理到实践

目录 1 CNN的发展历史 2 CNN的基本原理 3 CNN核心组件 3.1 卷积操作基础 3.2 卷积层详解 3.3 高级卷积操作 3.3.1 分组卷积&#xff08;Group Convolution&#xff09; 3.3.2 深度可分离卷积&#xff08;Depthwise Separable Convolution&#xff09;&#xff1a; 3.3 池…...

eNSP安装教程(内含安装包)

通过网盘分享的文件&#xff1a;eNSP模拟器.zip 链接: https://pan.baidu.com/s/1wPmAr4MV8YBq3U5i3hbhzQ 提取码: tefj --来自百度网盘超级会员v1的分享 &#xff01;&#xff01;&#xff01;&#xff01;解压后有四个文件&#xff0c;先安装Box&#xff0c;第二个安装cap&a…...

VBA技术资料MF244:利用VBA在图表工作表中创建堆积条形图

我给VBA的定义&#xff1a;VBA是个人小型自动化处理的有效工具。利用好了&#xff0c;可以大大提高自己的工作效率&#xff0c;而且可以提高数据的准确度。“VBA语言専攻”提供的教程一共九套&#xff0c;分为初级、中级、高级三大部分&#xff0c;教程是对VBA的系统讲解&#…...

【计算机网络安全】网络攻击

实验二 网络攻击 实验人员&#xff1a;第五组全体成员 一、实验目的&#xff1a; 1&#xff1a;掌握ARP欺骗的原理&#xff0c;实践ARP欺骗的过程。 2&#xff1a;掌握TCP劫持的原理&#xff0c;实践TCP劫持的过程。 3&#xff1a;掌握DNS欺骗的原理&#xff0c;实践DN…...