深度学习实验十七 优化算法比较
目录
一、优化算法的实验设定
1.1 2D可视化实验(被优化函数为)
1.2 简单拟合实验
二、学习率调整
2.1 AdaGrad算法
2.2 RMSprop算法
三、梯度修正估计
3.1 动量法
3.2 Adam算法
四、被优化函数变为的2D可视化
五、不同优化器的3D可视化对比
1.被优化函数为
2.被优化函数为
3.被优化函数为
总结:
附完整可运行代码
被优化函数为的各类优化器2D可视化和拟合实验代码:
nndl.py:
被优化函数为的2D可视化代码:
被优化函数为的3D图代码:
被优化函数为的3D可视化图:
被优化函数为的3D可视化图(期待改进):
实验大体步骤:
除了批大小对模型收敛速度的影响外,学习率和梯度估计也是影响神经网络优化的重要因素。神经网络优化中常用的优化方法也主要是如下两方面的改进,包括:
- 学习率调整:主要通过自适应地调整学习率使得优化更稳定。这类算法主要有AdaGrad、RMSprop、AdaDelta算法等。
- 梯度估计修正:主要通过修正每次迭代时估计的梯度方向来加快收敛速度。这类算法主要有动量法、Nesterov加速梯度方法等。
除上述方法外,本节还会介绍综合学习率调整和梯度估计修正的优化算法,如Adam算法。
一、优化算法的实验设定
为了更好地对比不同的优化算法,我们准备两个实验:第一个是2D可视化实验。第二个是简单拟合实验。
1.1 2D可视化实验(被优化函数为
)
将被优化函数实现为OptimizedFunction算子,其forward方法是Sphere函数的前向计算,backward方法则计算被优化函数对x的偏导。
# =====将被优化函数实现为OptimizedFunction算子====================================================
class OptimizedFunction(Op):def __init__(self, w):super(OptimizedFunction, self).__init__()self.w = torch.as_tensor(w, dtype=torch.float32)self.params = {'x': torch.as_tensor(0, dtype=torch.float32)}self.grads = {'x': torch.as_tensor(0, dtype=torch.float32)}def forward(self, x):self.params['x'] = xreturn torch.matmul(self.w.T, torch.square(self.params['x']))def backward(self):self.grads['x'] = 2 * torch.multiply(self.w.T, self.params['x'])
nndl.op.Op如下:
class Op(object):def __init__(self):passdef __call__(self, inputs):return self.forward(torch.as_tensor(inputs,dtype=torch.float32))def forward(self, inputs):raise NotImplementedErrordef backward(self, inputs):raise NotImplementedError
训练函数 定义一个简易的训练函数,记录梯度下降过程中每轮的参数x和损失。代码实现如下:
# =====训练函数 定义一个简易的训练函数,记录梯度下降过程中每轮的参数x和损失==============================================================
def train_f(model, optimizer, x_init, epoch):x = x_initall_x = []losses = []for i in range(epoch):all_x.append(copy.copy(x.numpy()))loss = model(x)losses.append(loss)model.backward()optimizer.step()x = model.params['x']return torch.as_tensor(all_x), losses
可视化函数 定义一个Visualization类,用于绘制x的更新轨迹。代码如下:
# =======可视化函数===============================================
import numpy as np
import matplotlib.pyplot as pltclass Visualization(object):def __init__(self):x1 = np.arange(-5, 5, 0.1)x2 = np.arange(-5, 5, 0.1)x1, x2 = np.meshgrid(x1, x2)self.init_x = torch.as_tensor([x1, x2])def plot_2d(self, model, x, fig_name):fig, ax = plt.subplots(figsize=(10, 6))cp = ax.contourf(self.init_x[0], self.init_x[1], model(self.init_x.transpose(1, 0)),colors=['#e4007f', '#f19ec2', '#e86096', '#eb7aaa', '#f6c8dc', '#f5f5f5', '#000000'])c = ax.contour(self.init_x[0], self.init_x[1], model(self.init_x.transpose(1, 0)), colors='black')cbar = fig.colorbar(cp)ax.plot(x[:, 0], x[:, 1], '-o', color='#000000')ax.plot(0, 'r*', markersize=18, color='#fefefe')ax.set_xlabel('$x1$')ax.set_ylabel('$x2$')ax.set_xlim((-2, 5))ax.set_ylim((-2, 5))plt.savefig(fig_name)
定义train_and_plot_f函数,调用train_f和Visualization,训练模型并可视化参数更新轨迹。
# =====调用train_f和Visualization,训练模型并可视化参数更新轨迹======================================
def train_and_plot_f(model, optimizer, epoch, fig_name):x_init = torch.as_tensor([3, 4], dtype=torch.float32)print('x1 initiate: {}, x2 initiate: {}'.format(x_init[0].numpy(), x_init[1].numpy()))x, losses = train_f(model, optimizer, x_init, epoch)losses = np.array(losses)# 展示x1、x2的更新轨迹vis = Visualization()vis.plot_2d(model, x, fig_name)
模型训练与可视化:
from nndl.op import SimpleBatchGD
# 固定随机种子
torch.seed()
w = torch.as_tensor([0.2, 2])
model = OptimizedFunction(w)
opt = SimpleBatchGD(init_lr=0.2, model=model)
# train_and_plot_f(model, opt, epoch=20, fig_name='opti-vis-para.pdf')
nndl.op.SimpleBatchGD和Optimizer如下:
class SimpleBatchGD(Optimizer):def __init__(self, init_lr, model):super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)def step(self):#参数更新if isinstance(self.model.params, dict):for key in self.model.params.keys():self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]# 优化器基类
class Optimizer(object):def __init__(self, init_lr, model):self.init_lr = init_lr#指定优化器需要优化的模型self.model = model@abstractmethoddef step(self):pass
运行结果:(SGD优化器)
1.2 简单拟合实验
数据集构建
# 固定随机种子
torch.seed()
# 随机生成shape为(1000,2)的训练数据
X = torch.randn([1000, 2])
w = torch.as_tensor([0.5, 0.8])
w = torch.unsqueeze(w, dim=1)
noise = 0.01 * torch.rand([1000])
noise = torch.unsqueeze(noise, dim=1)
# 计算y
y = torch.matmul(X, w) + noise
# 打印X, y样本
print('X: ', X[0].numpy())
print('y: ', y[0].numpy())# X,y组成训练样本数据
data = torch.concat((X, y), dim=1)
print('input data shape: ', data.shape)
print('data: ', data[0].numpy())
定义Linear算子,实现一个线性层的前向和反向计算。代码实现如下:
class Linear(Op):def __init__(self, input_size, weight_init=np.random.standard_normal, bias_init=torch.zeros):self.params = {}self.params['W'] = weight_init([input_size, 1])self.params['W'] = torch.as_tensor(self.params['W'],dtype=torch.float32)self.params['b'] = bias_init([1])self.inputs = Noneself.grads = {}def forward(self, inputs):self.inputs = inputsself.outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']return self.outputsdef backward(self, labels):K = self.inputs.shape[0]self.grads['W'] = 1./ K*torch.matmul(self.inputs.T, (self.outputs - labels))self.grads['b'] = 1./K* torch.sum(self.outputs-labels, dim=0)
模型训练train函数的代码实现如下:
def train(data, num_epochs, batch_size, model, calculate_loss, optimizer, verbose=False):# 记录每个回合损失的变化epoch_loss = []# 记录每次迭代损失的变化iter_loss = []N = len(data)for epoch_id in range(num_epochs):# np.random.shuffle(data) #不再随机打乱数据# 将训练数据进行拆分,每个mini_batch包含batch_size条的数据mini_batches = [data[i:i+batch_size] for i in range(0, N, batch_size)]for iter_id, mini_batch in enumerate(mini_batches):# data中前两个分量为Xinputs = mini_batch[:, :-1]# data中最后一个分量为ylabels = mini_batch[:, -1:]# 前向计算outputs = model(inputs)# 计算损失loss = calculate_loss(outputs, labels).numpy()# 计算梯度model.backward(labels)# 梯度更新optimizer.step()iter_loss.append(loss)# verbose = True 则打印当前回合的损失if verbose:print('Epoch {:3d}, loss = {:.4f}'.format(epoch_id, np.mean(iter_loss)))epoch_loss.append(np.mean(iter_loss))return iter_loss, epoch_loss
优化过程可视化 定义plot_loss函数,用于绘制损失函数变化趋势。代码实现如下:
def plot_loss(iter_loss, epoch_loss, fig_name):"""可视化损失函数的变化趋势"""plt.figure(figsize=(10, 4))ax1 = plt.subplot(121)ax1.plot(iter_loss, color='#e4007f')plt.title('iteration loss')ax2 = plt.subplot(122)ax2.plot(epoch_loss, color='#f19ec2')plt.title('epoch loss')plt.savefig(fig_name)plt.show()
对于使用不同优化器的模型训练,保存每一个回合损失的更新情况,并绘制出损失函数的变化趋势,以此验证模型是否收敛。定义train_and_plot函数,调用train和plot_loss函数,训练并展示每个回合和每次迭代(Iteration)的损失变化情况。在模型训练时,使用torch.nn.MSELoss()计算均方误差。代码实现如下:
import torch.nn as nn
def train_and_plot(optimizer, fig_name):"""训练网络并画出损失函数的变化趋势输入:- optimizer:优化器"""# 定义均方差损失mse = nn.MSELoss()iter_loss, epoch_loss = train(data, num_epochs=30, batch_size=64, model=model, calculate_loss=mse, optimizer=optimizer)plot_loss(iter_loss, epoch_loss, fig_name)
训练网络并可视化损失函数的变化趋势。代码实现如下:
# 固定随机种子
torch.seed()
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = SimpleBatchGD(init_lr=0.01, model=model)
train_and_plot(opt, 'opti-loss.pdf')
运行结果:
二、学习率调整
2.1 AdaGrad算法
构建优化器 定义Adagrad类,继承Optimizer类。定义step函数调用adagrad进行参数更新。代码实现如下:
class Adagrad(Optimizer):def __init__(self, init_lr, model, epsilon):super(Adagrad, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.epsilon = epsilondef adagrad(self, x, gradient_x, G, init_lr):G += gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):for key in self.model.params.keys():self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],self.model.grads[key],self.G[key],self.init_lr)
2D可视化实验 使用被优化函数展示Adagrad算法的参数更新轨迹。代码实现如下:
# 固定随机种子
torch.seed()
w = torch.as_tensor([0.2, 2])
model2 = OptimizedFunction(w)
opt2 = Adagrad(init_lr=0.5, model=model2, epsilon=1e-7)
train_and_plot_f(model2, opt2, epoch=50, fig_name='opti-vis-para2.pdf')
简单拟合实验 训练单层线性网络,验证损失是否收敛。代码实现如下:
# 固定随机种子
torch.seed()
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = Adagrad(init_lr=0.1, model=model, epsilon=1e-7)
train_and_plot(opt, 'opti-loss2.pdf')
运行结果:
2.2 RMSprop算法
构建优化器 定义RMSprop类,继承Optimizer类。定义step函数调用rmsprop更新参数。代码实现如下:
class RMSprop(Optimizer):def __init__(self, init_lr, model, beta, epsilon):super(RMSprop, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.beta = betaself.epsilon = epsilondef rmsprop(self, x, gradient_x, G, init_lr):"""rmsprop算法更新参数,G为迭代梯度平方的加权移动平均"""G = self.beta * G + (1 - self.beta) * gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key], self.model.grads[key],self.G[key], self.init_lr)
2D可视化实验 使用被优化函数展示RMSprop算法的参数更新轨迹。代码实现如下:
torch.seed()
w = torch.as_tensor([0.2, 2])
model3 = OptimizedFunction(w)
opt3 = RMSprop(init_lr=0.1, model=model3, beta=0.9, epsilon=1e-7)
train_and_plot_f(model3, opt3, epoch=50, fig_name='opti-vis-para3.pdf')
简单拟合实验 训练单层线性网络,进行简单的拟合实验。代码实现如下:
# 固定随机种子
torch.seed()
# 定义网络结构
model = Linear(2)
# 定义优化器
opt3 = RMSprop(init_lr=0.1, model=model, beta=0.9, epsilon=1e-7)
train_and_plot(opt3, 'opti-loss3.pdf')
运行结果:
三、梯度修正估计
除了调整学习率之外,还可以进行梯度估计修正。在小批量梯度下降法中,由于每次迭代的样本具有一定的随机性,因此每次迭代的梯度估计和整个训练集上的最优梯度并不一致。如果每次选取样本数量比较小,损失会呈振荡的方式下降。
一种有效地缓解梯度估计随机性的方式是通过使用最近一段时间内的平均梯度来代替当前时刻的随机梯度来作为参数更新的方向,从而提高优化速度。
3.1 动量法
构建优化器 定义Momentum类,继承Optimizer类。定义step函数调用momentum进行参数更新。代码实现如下:
class Momentum(Optimizer):def __init__(self, init_lr, model, rho):super(Momentum, self).__init__(init_lr=init_lr, model=model)self.delta_x = {}for key in self.model.params.keys():self.delta_x[key] = 0self.rho = rhodef momentum(self, x, gradient_x, delta_x, init_lr):"""momentum算法更新参数,delta_x为梯度的加权移动平均"""delta_x = self.rho * delta_x - init_lr * gradient_xx += delta_xreturn x, delta_xdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],self.model.grads[key],self.delta_x[key],self.init_lr)
2D可视化实验 使用被优化函数展示Momentum算法的参数更新轨迹。
# 固定随机种子
torch.seed()
w = torch.as_tensor([0.2, 2])
model4 = OptimizedFunction(w)
opt4 = Momentum(init_lr=0.01, model=model4, rho=0.9)
train_and_plot_f(model4, opt4, epoch=50, fig_name='opti-vis-para4.pdf')
简单拟合实验 训练单层线性网络,进行简单的拟合实验。代码实现如下:
# 固定随机种子
torch.seed()# 定义网络结构
model = Linear(2)
# 定义优化器
opt = Momentum(init_lr=0.01, model=model, rho=0.9)
train_and_plot(opt, 'opti-loss4.pdf')
运行结果:
3.2 Adam算法
Adam算法(自适应矩估计算法)可以看作动量法和RMSprop算法的结合,不但使用动量作为参数更新方向,而且可以自适应调整学习率。代码如下:
class Adam(Optimizer):def __init__(self, init_lr, model, beta1, beta2, epsilon):super(Adam, self).__init__(init_lr=init_lr, model=model)self.beta1 = beta1self.beta2 = beta2self.epsilon = epsilonself.M, self.G = {}, {}for key in self.model.params.keys():self.M[key] = 0self.G[key] = 0self.t = 1def adam(self, x, gradient_x, G, M, t, init_lr):M = self.beta1 * M + (1 - self.beta1) * gradient_xG = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2M_hat = M / (1 - self.beta1 ** t)G_hat = G / (1 - self.beta2 ** t)t += 1x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hatreturn x, G, M, tdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],self.model.grads[key],self.G[key],self.M[key],self.t,self.init_lr)
2D可视化实验 使用被优化函数展示Adam算法的参数更新轨迹。代码实现如下:
# 固定随机种子
torch.seed()
w = torch.as_tensor([0.2, 2])
model5 = OptimizedFunction(w)
opt5 = Adam(init_lr=0.2, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)
train_and_plot_f(model5, opt5, epoch=20, fig_name='opti-vis-para5.pdf')
简单拟合实验 训练单层线性网络,进行简单的拟合实验。代码实现如下:
# 固定随机种子
torch.seed()
# 定义网络结构
model = Linear(2)
# 定义优化器
opt5 = Adam(init_lr=0.1, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)
train_and_plot(opt5, 'opti-loss5.pdf')
运行结果:
我将书上的代码中epoch调到了70,发现此算法到达星点并不是简单的一个直线,有点像螺旋线一样。所以但从此实验的路径上看,Adam算法并没有AdaGrad算法好。
四、被优化函数变为
的2D可视化
代码如下:
# coding: utf-8
import numpy as np
import matplotlib.pyplot as plt
from collections import OrderedDictclass SGD:"""随机梯度下降法(Stochastic Gradient Descent)"""def __init__(self, lr=0.01):self.lr = lrdef update(self, params, grads):for key in params.keys():params[key] -= self.lr * grads[key]class Momentum:"""Momentum SGD"""def __init__(self, lr=0.01, momentum=0.9):self.lr = lrself.momentum = momentumself.v = Nonedef update(self, params, grads):if self.v is None:self.v = {}for key, val in params.items():self.v[key] = np.zeros_like(val)for key in params.keys():self.v[key] = self.momentum * self.v[key] - self.lr * grads[key]params[key] += self.v[key]class Nesterov:"""Nesterov's Accelerated Gradient (http://arxiv.org/abs/1212.0901)"""def __init__(self, lr=0.01, momentum=0.9):self.lr = lrself.momentum = momentumself.v = Nonedef update(self, params, grads):if self.v is None:self.v = {}for key, val in params.items():self.v[key] = np.zeros_like(val)for key in params.keys():self.v[key] *= self.momentumself.v[key] -= self.lr * grads[key]params[key] += self.momentum * self.momentum * self.v[key]params[key] -= (1 + self.momentum) * self.lr * grads[key]class AdaGrad:"""AdaGrad"""def __init__(self, lr=0.01):self.lr = lrself.h = Nonedef update(self, params, grads):if self.h is None:self.h = {}for key, val in params.items():self.h[key] = np.zeros_like(val)for key in params.keys():self.h[key] += grads[key] * grads[key]params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)class RMSprop:"""RMSprop"""def __init__(self, lr=0.01, decay_rate=0.99):self.lr = lrself.decay_rate = decay_rateself.h = Nonedef update(self, params, grads):if self.h is None:self.h = {}for key, val in params.items():self.h[key] = np.zeros_like(val)for key in params.keys():self.h[key] *= self.decay_rateself.h[key] += (1 - self.decay_rate) * grads[key] * grads[key]params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)class Adam:"""Adam (http://arxiv.org/abs/1412.6980v8)"""def __init__(self, lr=0.001, beta1=0.9, beta2=0.999):self.lr = lrself.beta1 = beta1self.beta2 = beta2self.iter = 0self.m = Noneself.v = Nonedef update(self, params, grads):if self.m is None:self.m, self.v = {}, {}for key, val in params.items():self.m[key] = np.zeros_like(val)self.v[key] = np.zeros_like(val)self.iter += 1lr_t = self.lr * np.sqrt(1.0 - self.beta2 ** self.iter) / (1.0 - self.beta1 ** self.iter)for key in params.keys():self.m[key] += (1 - self.beta1) * (grads[key] - self.m[key])self.v[key] += (1 - self.beta2) * (grads[key] ** 2 - self.v[key])params[key] -= lr_t * self.m[key] / (np.sqrt(self.v[key]) + 1e-7)def f(x, y):return x ** 2 / 20.0 + y ** 2def df(x, y):return x / 10.0, 2.0 * yinit_pos = (-7.0, 2.0)
params = {}
params['x'], params['y'] = init_pos[0], init_pos[1]
grads = {}
grads['x'], grads['y'] = 0, 0optimizers = OrderedDict()
optimizers["SGD"] = SGD(lr=0.95)
optimizers["Momentum"] = Momentum(lr=0.1)
optimizers["AdaGrad"] = AdaGrad(lr=1.5)
optimizers["Adam"] = Adam(lr=0.3)idx = 1for key in optimizers:optimizer = optimizers[key]x_history = []y_history = []params['x'], params['y'] = init_pos[0], init_pos[1]for i in range(30):x_history.append(params['x'])y_history.append(params['y'])grads['x'], grads['y'] = df(params['x'], params['y'])optimizer.update(params, grads)x = np.arange(-10, 10, 0.01)y = np.arange(-5, 5, 0.01)X, Y = np.meshgrid(x, y)Z = f(X, Y)# for simple contour linemask = Z > 7Z[mask] = 0# plotplt.subplot(2, 2, idx)idx += 1plt.plot(x_history, y_history, 'o-', color="red")plt.contour(X, Y, Z) # 绘制等高线plt.ylim(-10, 10)plt.xlim(-10, 10)plt.plot(0, 0, '+')plt.title(key)plt.xlabel("x")plt.ylabel("y")plt.subplots_adjust(wspace=0, hspace=0) # 调整子图间距
plt.show()
运行结果:
五、不同优化器的3D可视化对比
1.被优化函数为![f(x)={x[0]}^2+{x[1]}^2+{x[1]}^3+x[0]*x[1]](https://latex.csdn.net/eq?f%28x%29%3D%7Bx%5B0%5D%7D%5E2+%7Bx%5B1%5D%7D%5E2+%7Bx%5B1%5D%7D%5E3+x%5B0%5D*x%5B1%5D)
代码如下:
import torch
import numpy as np
import copy
from matplotlib import pyplot as plt
from matplotlib import animation
from itertools import zip_longestclass Op(object):def __init__(self):passdef __call__(self, inputs):return self.forward(inputs)# 输入:张量inputs# 输出:张量outputsdef forward(self, inputs):# return outputsraise NotImplementedError# 输入:最终输出对outputs的梯度outputs_grads# 输出:最终输出对inputs的梯度inputs_gradsdef backward(self, outputs_grads):# return inputs_gradsraise NotImplementedErrorclass Optimizer(object): # 优化器基类def __init__(self, init_lr, model):"""优化器类初始化"""# 初始化学习率,用于参数更新的计算self.init_lr = init_lr# 指定优化器需要优化的模型self.model = modeldef step(self):"""定义每次迭代如何更新参数"""passclass SimpleBatchGD(Optimizer):def __init__(self, init_lr, model):super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)def step(self):# 参数更新if isinstance(self.model.params, dict):for key in self.model.params.keys():self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]class Adagrad(Optimizer):def __init__(self, init_lr, model, epsilon):"""Adagrad 优化器初始化输入:- init_lr: 初始学习率 - model:模型,model.params存储模型参数值 - epsilon:保持数值稳定性而设置的非常小的常数"""super(Adagrad, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.epsilon = epsilondef adagrad(self, x, gradient_x, G, init_lr):"""adagrad算法更新参数,G为参数梯度平方的累计值。"""G += gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],self.model.grads[key],self.G[key],self.init_lr)class RMSprop(Optimizer):def __init__(self, init_lr, model, beta, epsilon):"""RMSprop优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- beta:衰减率- epsilon:保持数值稳定性而设置的常数"""super(RMSprop, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.beta = betaself.epsilon = epsilondef rmsprop(self, x, gradient_x, G, init_lr):"""rmsprop算法更新参数,G为迭代梯度平方的加权移动平均"""G = self.beta * G + (1 - self.beta) * gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],self.model.grads[key],self.G[key],self.init_lr)class Momentum(Optimizer):def __init__(self, init_lr, model, rho):"""Momentum优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- rho:动量因子"""super(Momentum, self).__init__(init_lr=init_lr, model=model)self.delta_x = {}for key in self.model.params.keys():self.delta_x[key] = 0self.rho = rhodef momentum(self, x, gradient_x, delta_x, init_lr):"""momentum算法更新参数,delta_x为梯度的加权移动平均"""delta_x = self.rho * delta_x - init_lr * gradient_xx += delta_xreturn x, delta_xdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],self.model.grads[key],self.delta_x[key],self.init_lr)class Adam(Optimizer):def __init__(self, init_lr, model, beta1, beta2, epsilon):"""Adam优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- beta1, beta2:移动平均的衰减率- epsilon:保持数值稳定性而设置的常数"""super(Adam, self).__init__(init_lr=init_lr, model=model)self.beta1 = beta1self.beta2 = beta2self.epsilon = epsilonself.M, self.G = {}, {}for key in self.model.params.keys():self.M[key] = 0self.G[key] = 0self.t = 1def adam(self, x, gradient_x, G, M, t, init_lr):"""adam算法更新参数输入:- x:参数- G:梯度平方的加权移动平均- M:梯度的加权移动平均- t:迭代次数- init_lr:初始学习率"""M = self.beta1 * M + (1 - self.beta1) * gradient_xG = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2M_hat = M / (1 - self.beta1 ** t)G_hat = G / (1 - self.beta2 ** t)t += 1x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hatreturn x, G, M, tdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],self.model.grads[key],self.G[key],self.M[key],self.t,self.init_lr)class OptimizedFunction3D(Op):def __init__(self):super(OptimizedFunction3D, self).__init__()self.params = {'x': 0}self.grads = {'x': 0}def forward(self, x):self.params['x'] = xreturn x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]def backward(self):x = self.params['x']gradient1 = 2 * x[0] + x[1]gradient2 = 2 * x[1] + 3 * x[1] ** 2 + x[0]grad1 = torch.Tensor([gradient1])grad2 = torch.Tensor([gradient2])self.grads['x'] = torch.cat([grad1, grad2])class Visualization3D(animation.FuncAnimation):""" 绘制动态图像,可视化参数更新轨迹 """def __init__(self, *xy_values, z_values, labels=[], colors=[], fig, ax, interval=600, blit=True, **kwargs):"""初始化3d可视化类输入:xy_values:三维中x,y维度的值z_values:三维中z维度的值labels:每个参数更新轨迹的标签colors:每个轨迹的颜色interval:帧之间的延迟(以毫秒为单位)blit:是否优化绘图"""self.fig = figself.ax = axself.xy_values = xy_valuesself.z_values = z_valuesframes = max(xy_value.shape[0] for xy_value in xy_values)self.lines = [ax.plot([], [], [], label=label, color=color, lw=2)[0]for _, label, color in zip_longest(xy_values, labels, colors)]super(Visualization3D, self).__init__(fig, self.animate, init_func=self.init_animation, frames=frames,interval=interval, blit=blit, **kwargs)def init_animation(self):# 数值初始化for line in self.lines:line.set_data([], [])# line.set_3d_properties(np.asarray([])) # 源程序中有这一行,加上会报错。 Edit by David 2022.12.4return self.linesdef animate(self, i):# 将x,y,z三个数据传入,绘制三维图像for line, xy_value, z_value in zip(self.lines, self.xy_values, self.z_values):line.set_data(xy_value[:i, 0], xy_value[:i, 1])line.set_3d_properties(z_value[:i])return self.linesdef train_f(model, optimizer, x_init, epoch):x = x_initall_x = []losses = []for i in range(epoch):all_x.append(copy.copy(x.numpy())) # 浅拷贝 改为 深拷贝, 否则List的原值会被改变。 Edit by David 2022.12.4.loss = model(x)losses.append(loss)model.backward()optimizer.step()x = model.params['x']return torch.Tensor(np.array(all_x)), losses# 构建5个模型,分别配备不同的优化器
model1 = OptimizedFunction3D()
opt_gd = SimpleBatchGD(init_lr=0.01, model=model1)model2 = OptimizedFunction3D()
opt_adagrad = Adagrad(init_lr=0.5, model=model2, epsilon=1e-7)model3 = OptimizedFunction3D()
opt_rmsprop = RMSprop(init_lr=0.1, model=model3, beta=0.9, epsilon=1e-7)model4 = OptimizedFunction3D()
opt_momentum = Momentum(init_lr=0.01, model=model4, rho=0.9)model5 = OptimizedFunction3D()
opt_adam = Adam(init_lr=0.1, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)models = [model1, model2, model3, model4, model5]
opts = [opt_gd, opt_adagrad, opt_rmsprop, opt_momentum, opt_adam]x_all_opts = []
z_all_opts = []# 使用不同优化器训练for model, opt in zip(models, opts):x_init = torch.FloatTensor([2, 3])x_one_opt, z_one_opt = train_f(model, opt, x_init, 150) # epoch# 保存参数值x_all_opts.append(x_one_opt.numpy())z_all_opts.append(np.squeeze(z_one_opt))# 使用numpy.meshgrid生成x1,x2矩阵,矩阵的每一行为[-3, 3],以0.1为间隔的数值
x1 = np.arange(-3, 3, 0.1)
x2 = np.arange(-3, 3, 0.1)
x1, x2 = np.meshgrid(x1, x2)
init_x = torch.Tensor(np.array([x1, x2]))model = OptimizedFunction3D()# 绘制 f_3d函数 的 三维图像
fig = plt.figure()
ax = plt.axes(projection='3d')
X = init_x[0].numpy()
Y = init_x[1].numpy()
Z = model(init_x).numpy() # 改为 model(init_x).numpy() David 2022.12.4
ax.plot_surface(X, Y, Z, cmap='rainbow')ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('f(x1,x2)')labels = ['SGD', 'AdaGrad', 'RMSprop', 'Momentum', 'Adam']
colors = ['#f6373c', '#f6f237', '#45f637', '#37f0f6', '#000000']animator = Visualization3D(*x_all_opts, z_values=z_all_opts, labels=labels, colors=colors, fig=fig, ax=ax)
ax.legend(loc='upper left')plt.show()
运行结果:
从图可以看到被优化函数在(0,0)处存在一个鞍点,即一个既不是极大值点也不是极小值点的临界点。从右图中可以看到,对于我们构建的函数,只有优化器Momentum在参数更新时成功逃离鞍点,其他优化器在实验中收敛到鞍点处没有逃离成功。但这并不证明Momentum优化器是最好的优化器,在模型训练时使用哪种优化器,还要结合具体的场景和数据具体分析。
2.被优化函数为![f(x)=\frac{1}{2}{x[0]}^2+{x[1]}^2](https://latex.csdn.net/eq?f%28x%29%3D%5Cfrac%7B1%7D%7B2%7D%7Bx%5B0%5D%7D%5E2+%7Bx%5B1%5D%7D%5E2)
代码如下:
import torch
import numpy as np
import copy
from matplotlib import pyplot as plt
from matplotlib import animation
from itertools import zip_longest
from matplotlib import cmclass Op(object):def __init__(self):passdef __call__(self, inputs):return self.forward(inputs)# 输入:张量inputs# 输出:张量outputsdef forward(self, inputs):# return outputsraise NotImplementedError# 输入:最终输出对outputs的梯度outputs_grads# 输出:最终输出对inputs的梯度inputs_gradsdef backward(self, outputs_grads):# return inputs_gradsraise NotImplementedErrorclass Optimizer(object): # 优化器基类def __init__(self, init_lr, model):"""优化器类初始化"""# 初始化学习率,用于参数更新的计算self.init_lr = init_lr# 指定优化器需要优化的模型self.model = modeldef step(self):"""定义每次迭代如何更新参数"""passclass SimpleBatchGD(Optimizer):def __init__(self, init_lr, model):super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)def step(self):# 参数更新if isinstance(self.model.params, dict):for key in self.model.params.keys():self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]class Adagrad(Optimizer):def __init__(self, init_lr, model, epsilon):"""Adagrad 优化器初始化输入:- init_lr: 初始学习率 - model:模型,model.params存储模型参数值 - epsilon:保持数值稳定性而设置的非常小的常数"""super(Adagrad, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.epsilon = epsilondef adagrad(self, x, gradient_x, G, init_lr):"""adagrad算法更新参数,G为参数梯度平方的累计值。"""G += gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],self.model.grads[key],self.G[key],self.init_lr)class RMSprop(Optimizer):def __init__(self, init_lr, model, beta, epsilon):"""RMSprop优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- beta:衰减率- epsilon:保持数值稳定性而设置的常数"""super(RMSprop, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.beta = betaself.epsilon = epsilondef rmsprop(self, x, gradient_x, G, init_lr):"""rmsprop算法更新参数,G为迭代梯度平方的加权移动平均"""G = self.beta * G + (1 - self.beta) * gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],self.model.grads[key],self.G[key],self.init_lr)class Momentum(Optimizer):def __init__(self, init_lr, model, rho):"""Momentum优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- rho:动量因子"""super(Momentum, self).__init__(init_lr=init_lr, model=model)self.delta_x = {}for key in self.model.params.keys():self.delta_x[key] = 0self.rho = rhodef momentum(self, x, gradient_x, delta_x, init_lr):"""momentum算法更新参数,delta_x为梯度的加权移动平均"""delta_x = self.rho * delta_x - init_lr * gradient_xx += delta_xreturn x, delta_xdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],self.model.grads[key],self.delta_x[key],self.init_lr)class Adam(Optimizer):def __init__(self, init_lr, model, beta1, beta2, epsilon):"""Adam优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- beta1, beta2:移动平均的衰减率- epsilon:保持数值稳定性而设置的常数"""super(Adam, self).__init__(init_lr=init_lr, model=model)self.beta1 = beta1self.beta2 = beta2self.epsilon = epsilonself.M, self.G = {}, {}for key in self.model.params.keys():self.M[key] = 0self.G[key] = 0self.t = 1def adam(self, x, gradient_x, G, M, t, init_lr):"""adam算法更新参数输入:- x:参数- G:梯度平方的加权移动平均- M:梯度的加权移动平均- t:迭代次数- init_lr:初始学习率"""M = self.beta1 * M + (1 - self.beta1) * gradient_xG = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2M_hat = M / (1 - self.beta1 ** t)G_hat = G / (1 - self.beta2 ** t)t += 1x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hatreturn x, G, M, tdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],self.model.grads[key],self.G[key],self.M[key],self.t,self.init_lr)class OptimizedFunction3D(Op):def __init__(self):super(OptimizedFunction3D, self).__init__()self.params = {'x': 0}self.grads = {'x': 0}def forward(self, x):self.params['x'] = xreturn - x[0] * x[0] / 2 + x[1] * x[1] / 1 # x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]def backward(self):x = self.params['x']gradient1 = - 2 * x[0] / 2gradient2 = 2 * x[1] / 1grad1 = torch.Tensor([gradient1])grad2 = torch.Tensor([gradient2])self.grads['x'] = torch.cat([grad1, grad2])class Visualization3D(animation.FuncAnimation):""" 绘制动态图像,可视化参数更新轨迹 """def __init__(self, *xy_values, z_values, labels=[], colors=[], fig, ax, interval=100, blit=True, **kwargs):"""初始化3d可视化类输入:xy_values:三维中x,y维度的值z_values:三维中z维度的值labels:每个参数更新轨迹的标签colors:每个轨迹的颜色interval:帧之间的延迟(以毫秒为单位)blit:是否优化绘图"""self.fig = figself.ax = axself.xy_values = xy_valuesself.z_values = z_valuesframes = max(xy_value.shape[0] for xy_value in xy_values)# , marker = 'o'self.lines = [ax.plot([], [], [], label=label, color=color, lw=2)[0]for _, label, color in zip_longest(xy_values, labels, colors)]print(self.lines)super(Visualization3D, self).__init__(fig, self.animate, init_func=self.init_animation, frames=frames,interval=interval, blit=blit, **kwargs)def init_animation(self):# 数值初始化for line in self.lines:line.set_data([], [])# line.set_3d_properties(np.asarray([])) # 源程序中有这一行,加上会报错。 Edit by David 2022.12.4return self.linesdef animate(self, i):# 将x,y,z三个数据传入,绘制三维图像for line, xy_value, z_value in zip(self.lines, self.xy_values, self.z_values):line.set_data(xy_value[:i, 0], xy_value[:i, 1])line.set_3d_properties(z_value[:i])return self.linesdef train_f(model, optimizer, x_init, epoch):x = x_initall_x = []losses = []for i in range(epoch):all_x.append(copy.deepcopy(x.numpy())) # 浅拷贝 改为 深拷贝, 否则List的原值会被改变。 Edit by David 2022.12.4.loss = model(x)losses.append(loss)model.backward()optimizer.step()x = model.params['x']return torch.Tensor(np.array(all_x)), losses# 构建5个模型,分别配备不同的优化器
model1 = OptimizedFunction3D()
opt_gd = SimpleBatchGD(init_lr=0.05, model=model1)model2 = OptimizedFunction3D()
opt_adagrad = Adagrad(init_lr=0.05, model=model2, epsilon=1e-7)model3 = OptimizedFunction3D()
opt_rmsprop = RMSprop(init_lr=0.05, model=model3, beta=0.9, epsilon=1e-7)model4 = OptimizedFunction3D()
opt_momentum = Momentum(init_lr=0.05, model=model4, rho=0.9)model5 = OptimizedFunction3D()
opt_adam = Adam(init_lr=0.05, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)models = [model5, model2, model3, model4, model1]
opts = [opt_adam, opt_adagrad, opt_rmsprop, opt_momentum, opt_gd]x_all_opts = []
z_all_opts = []# 使用不同优化器训练for model, opt in zip(models, opts):x_init = torch.FloatTensor([0.00001, 0.5])x_one_opt, z_one_opt = train_f(model, opt, x_init, 100) # epoch# 保存参数值x_all_opts.append(x_one_opt.numpy())z_all_opts.append(np.squeeze(z_one_opt))# 使用numpy.meshgrid生成x1,x2矩阵,矩阵的每一行为[-3, 3],以0.1为间隔的数值
x1 = np.arange(-1, 2, 0.01)
x2 = np.arange(-1, 1, 0.05)
x1, x2 = np.meshgrid(x1, x2)
init_x = torch.Tensor(np.array([x1, x2]))model = OptimizedFunction3D()# 绘制 f_3d函数 的 三维图像
fig = plt.figure()
ax = plt.axes(projection='3d')
X = init_x[0].numpy()
Y = init_x[1].numpy()
Z = model(init_x).numpy() # 改为 model(init_x).numpy() David 2022.12.4
surf = ax.plot_surface(X, Y, Z, edgecolor='grey', cmap=cm.coolwarm)
# fig.colorbar(surf, shrink=0.5, aspect=1)
ax.set_zlim(-3, 2)
ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('f(x1,x2)')labels = ['Adam', 'AdaGrad', 'RMSprop', 'Momentum', 'SGD']
colors = ['#8B0000', '#0000FF', '#000000', '#008B00', '#FF0000']animator = Visualization3D(*x_all_opts, z_values=z_all_opts, labels=labels, colors=colors, fig=fig, ax=ax)
ax.legend(loc='upper right')plt.show()
运行结果:
从图中可以看出,只有SGD没有逃离鞍点,其他优化器均逃离。同时,观看博客上的动图可知,Momentum优化器最开始也是陷入了鞍点之中的,当找到逃离鞍点的方向时,就会下降的特别快,甚至超过了没有陷入鞍点的AdaGrad算法。
得出了一个和上文相反的运行结果,对于上文实验的平面是只有Momentum逃离鞍点,对于本节实验则开始Momentum溜的最慢,说明算法的优劣和所优化的平面有非常大的关系,对应到数据上,就是不同的数据分布所需要的优化算法是不同的,具体什么优化算法就得实验结果来说明了,实践是检验真理的唯一标准。
Momentum算法当某个参数在最近一段时间内的梯度方向不一致时,其真实的参数更新幅度变小;相反,当在最近一段时间内的梯度方向都一致时,其真实的参数更新幅度变大,起到加速作用.从此图中可以看到,Momentum最初陷入了鞍点,但是当找到逃离鞍点的梯度方向后,下降的就很快了。
3.被优化函数为
代码如下:
import animator
import torch
import numpy as np
import copy
from matplotlib import pyplot as plt
from matplotlib import animation
from itertools import zip_longest
from matplotlib import cm
from matplotlib.animation import FuncAnimationclass Op(object):def __init__(self):passdef __call__(self, inputs):return self.forward(inputs)# 输入:张量inputs# 输出:张量outputsdef forward(self, inputs):# return outputsraise NotImplementedError# 输入:最终输出对outputs的梯度outputs_grads# 输出:最终输出对inputs的梯度inputs_gradsdef backward(self, outputs_grads):# return inputs_gradsraise NotImplementedErrorclass Optimizer(object): # 优化器基类def __init__(self, init_lr, model):"""优化器类初始化"""# 初始化学习率,用于参数更新的计算self.init_lr = init_lr# 指定优化器需要优化的模型self.model = modeldef step(self):"""定义每次迭代如何更新参数"""passclass SimpleBatchGD(Optimizer):def __init__(self, init_lr, model):super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)def step(self):# 参数更新if isinstance(self.model.params, dict):for key in self.model.params.keys():self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]class Adagrad(Optimizer):def __init__(self, init_lr, model, epsilon):"""Adagrad 优化器初始化输入:- init_lr: 初始学习率 - model:模型,model.params存储模型参数值 - epsilon:保持数值稳定性而设置的非常小的常数"""super(Adagrad, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.epsilon = epsilondef adagrad(self, x, gradient_x, G, init_lr):"""adagrad算法更新参数,G为参数梯度平方的累计值。"""G += gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],self.model.grads[key],self.G[key],self.init_lr)class RMSprop(Optimizer):def __init__(self, init_lr, model, beta, epsilon):"""RMSprop优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- beta:衰减率- epsilon:保持数值稳定性而设置的常数"""super(RMSprop, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.beta = betaself.epsilon = epsilondef rmsprop(self, x, gradient_x, G, init_lr):"""rmsprop算法更新参数,G为迭代梯度平方的加权移动平均"""G = self.beta * G + (1 - self.beta) * gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],self.model.grads[key],self.G[key],self.init_lr)class Momentum(Optimizer):def __init__(self, init_lr, model, rho):"""Momentum优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- rho:动量因子"""super(Momentum, self).__init__(init_lr=init_lr, model=model)self.delta_x = {}for key in self.model.params.keys():self.delta_x[key] = 0self.rho = rhodef momentum(self, x, gradient_x, delta_x, init_lr):"""momentum算法更新参数,delta_x为梯度的加权移动平均"""delta_x = self.rho * delta_x - init_lr * gradient_xx += delta_xreturn x, delta_xdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],self.model.grads[key],self.delta_x[key],self.init_lr)class Adam(Optimizer):def __init__(self, init_lr, model, beta1, beta2, epsilon):"""Adam优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- beta1, beta2:移动平均的衰减率- epsilon:保持数值稳定性而设置的常数"""super(Adam, self).__init__(init_lr=init_lr, model=model)self.beta1 = beta1self.beta2 = beta2self.epsilon = epsilonself.M, self.G = {}, {}for key in self.model.params.keys():self.M[key] = 0self.G[key] = 0self.t = 1def adam(self, x, gradient_x, G, M, t, init_lr):"""adam算法更新参数输入:- x:参数- G:梯度平方的加权移动平均- M:梯度的加权移动平均- t:迭代次数- init_lr:初始学习率"""M = self.beta1 * M + (1 - self.beta1) * gradient_xG = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2M_hat = M / (1 - self.beta1 ** t)G_hat = G / (1 - self.beta2 ** t)t += 1x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hatreturn x, G, M, tdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],self.model.grads[key],self.G[key],self.M[key],self.t,self.init_lr)class OptimizedFunction3D(Op):def __init__(self):super(OptimizedFunction3D, self).__init__()self.params = {'x': 0}self.grads = {'x': 0}def forward(self, x):self.params['x'] = xreturn x[0] * x[0] / 20 + x[1] * x[1] / 1 # x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]def backward(self):x = self.params['x']gradient1 = 2 * x[0] / 20gradient2 = 2 * x[1] / 1grad1 = torch.Tensor([gradient1])grad2 = torch.Tensor([gradient2])self.grads['x'] = torch.cat([grad1, grad2])class Visualization3D(animation.FuncAnimation):"""绘制动态图像,可视化参数更新轨迹"""def __init__(self, *xy_values, z_values, labels=[], colors=[], fig, ax, interval=100, blit=True, **kwargs):"""初始化3D可视化类输入:xy_values:三维中x,y维度的值z_values:三维中z维度的值labels:每个参数更新轨迹的标签colors:每个轨迹的颜色interval:帧之间的延迟(以毫秒为单位)blit:是否优化绘图"""self.fig = figself.ax = axself.xy_values = xy_valuesself.z_values = z_valuesself.surf = None # 曲面图初始化为空frames = max(xy_value.shape[0] for xy_value in xy_values)self.lines = [ax.plot([], [], [], label=label, color=color, lw=2)[0]for _, label, color in zip_longest(xy_values, labels, colors)]self.points = [ax.plot([], [], [], color=color, markeredgewidth=1, markeredgecolor='black', marker='o')[0]for _, color in zip_longest(xy_values, colors)]super(Visualization3D, self).__init__(fig, self.animate, init_func=self.init_animation, frames=frames,interval=interval, blit=blit, **kwargs)def init_animation(self):# 数值初始化for line in self.lines:line.set_data([], [])for point in self.points:point.set_data([], [])if self.surf is not None:self.surf.remove()self.surf = None # 确保清除之前的曲面return self.points + self.linesdef animate(self, i):try:print(f"Frame {i}") # 打印当前帧号for line, xy_value, z_value in zip(self.lines, self.xy_values, self.z_values):line.set_data(xy_value[:i, 0], xy_value[:i, 1])line.set_3d_properties(z_value[:i])for point, xy_value, z_value in zip(self.points, self.xy_values, self.z_values):point.set_data(xy_value[i, 0], xy_value[i, 1])point.set_3d_properties(z_value[i])if self.surf is not None:self.surf.remove() # 移除前一帧的曲面x = self.xy_values[0][:i, 0]y = self.xy_values[0][:i, 1]z = self.z_values[0][:i]X, Y = np.meshgrid(x, y)Z = np.reshape(z, (len(x), len(y)))self.surf = self.ax.plot_surface(X, Y, Z, color='gray', alpha=0.5, rstride=1, cstride=1)return self.points + self.lines + [self.surf]except Exception as e:print(f"Error in frame {i}: {e}")raisedef train_f(model, optimizer, x_init, epoch):x = x_initall_x = []losses = []for i in range(epoch):all_x.append(copy.deepcopy(x.numpy())) # 浅拷贝 改为 深拷贝, 否则List的原值会被改变。 Edit by David 2022.12.4.loss = model(x)losses.append(loss)model.backward()optimizer.step()x = model.params['x']return torch.Tensor(np.array(all_x)), losses# 构建5个模型,分别配备不同的优化器
model1 = OptimizedFunction3D()
opt_gd = SimpleBatchGD(init_lr=0.95, model=model1)model2 = OptimizedFunction3D()
opt_adagrad = Adagrad(init_lr=1.5, model=model2, epsilon=1e-7)model3 = OptimizedFunction3D()
opt_rmsprop = RMSprop(init_lr=0.05, model=model3, beta=0.9, epsilon=1e-7)model4 = OptimizedFunction3D()
opt_momentum = Momentum(init_lr=0.1, model=model4, rho=0.9)model5 = OptimizedFunction3D()
opt_adam = Adam(init_lr=0.3, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)models = [model1, model2, model3, model4, model5]
opts = [opt_gd, opt_adagrad, opt_rmsprop, opt_momentum, opt_adam]x_all_opts = [] # 存储每种优化器的参数轨迹
z_all_opts = [] # 存储每种优化器的函数值轨迹# 使用不同优化器训练
for model, opt in zip(models, opts):x_init = torch.FloatTensor([-7, 2]) # 初始值x_one_opt, z_one_opt = train_f(model, opt, x_init, 100) # 训练 100 个 epoch# 保存参数值x_all_opts.append(x_one_opt.numpy()) # 转为 NumPy 数组,形状为 (T, 2)z_all_opts.append(np.squeeze(z_one_opt)) # 转为 NumPy 数组,形状为 (T,)# print("x_all_opts:", x_all_opts)
# print("z_all_opts:", z_all_opts)# 使用numpy.meshgrid生成x1,x2矩阵
x1 = np.arange(-10, 10, 0.01)
x2 = np.arange(-5, 5, 0.01)
x1, x2 = np.meshgrid(x1, x2)# 将x1和x2作为输入,堆叠成形状为 (2, M, N)
init_x = torch.Tensor(np.stack([x1, x2], axis=0)) # 形状为 (2, M, N)# 假设模型已经定义
model = OptimizedFunction3D()# 确保模型能处理形状为 (2, M, N) 的输入
Z = model(init_x)
if isinstance(Z, torch.Tensor): # 如果是PyTorch张量,转换为NumPy数组Z = Z.detach().numpy()# 确保 Z 的形状和 x1, x2 一致
Z = Z.reshape(x1.shape)# 绘制三维表面
fig = plt.figure()
ax = plt.axes(projection='3d')
surf = ax.plot_surface(x1, x2, Z, cmap='viridis', edgecolor='none', alpha=0.6)# 设置标题和坐标轴标签
ax.set_title('Optimized Function 3D')
ax.set_xlabel('X1')
ax.set_ylabel('X2')
ax.set_zlabel('Z')# 添加颜色条
fig.colorbar(surf)# 每种优化器的训练轨迹
labels = ['SGD', 'Adagrad', 'RMSprop', 'Momentum', 'Adam']
colors = ['r', 'g', 'b', 'c', 'm']# 假设 x_all_opts 和 z_all_opts 是训练过程中收集的轨迹点
# x_all_opts[i] 是形状 (T, 2) 的数组,表示第 i 种优化器 T 步的 (x1, x2) 参数
# z_all_opts[i] 是形状 (T,) 的数组,表示每步对应的函数值 z
# x_all_opts = [...] # 填入实际数据
# z_all_opts = [...] # 填入实际数据# 初始化小球的位置
balls = []
for color in colors:ball, = ax.plot([], [], [], 'o', color=color, markersize=6)balls.append(ball)# 初始化小球和轨迹
scatters = [] # 保存小球的列表
lines = [] # 保存轨迹线的列表for i in range(len(x_all_opts)):scatter = ax.scatter(x_all_opts[i][0, 0],x_all_opts[i][0, 1],z_all_opts[i][0],color=colors[i],s=50, # 小球大小label=labels[i])scatters.append(scatter)line, = ax.plot([], [], [],color=colors[i],linewidth=1.5,alpha=0.8)lines.append(line)# 添加图例到右上角
ax.legend(loc="upper right")# 更新函数
def update(frame):updated_artists = [] # 存储更新的对象for i in range(len(scatters)):# 更新小球位置scatters[i]._offsets3d = ([x_all_opts[i][frame, 0]],[x_all_opts[i][frame, 1]],[z_all_opts[i][frame]],)# 更新轨迹线lines[i].set_data(x_all_opts[i][:frame + 1, 0], # X 轨迹x_all_opts[i][:frame + 1, 1], # Y 轨迹)lines[i].set_3d_properties(z_all_opts[i][:frame + 1]) # Z 轨迹# 添加到更新列表updated_artists.append(scatters[i])updated_artists.append(lines[i])return updated_artists # 返回更新的对象# 创建动画
num_frames = max(len(x) for x in x_all_opts) # 获取最长的轨迹步数
ani = FuncAnimation(fig, update, frames=num_frames, interval=100, blit=True)# 显示图像
plt.show()
# animator.save('teaser' + '.gif', writer='imagemagick', fps=10) # 效果不好,估计被挡住了…… 有待进一步提高 Edit by David 2022.12.4
# save不好用,不费劲了,安装个软件做gif https://pc.qq.com/detail/13/detail_23913.html
运行结果:
从图中可以看到,此函数的极小值点位于(0,0)。在迭代的过程中,RMSprop算法最慢,在其他优化器均到达的情况下,它还没有到。虽然SGD到达的路径崎岖了点,但终究是很快就到了。观察Momentum的路径,相当于是SGD路径的一个优化,更加平滑了些。
老师博客上的这个代码我运行有点问题,总是弹出一个2D图就闪退了,修改了一下是我这个样子了,代码放在了我的博客上。不过也有一点缺点,就是小球动的不是很灵敏,要拖动一下才会动一会儿。
在迭代的过程中,RMSprop算法最慢,在其他优化器均到达的情况下,它还没有到,这进一步说明了在模型训练时使用哪种优化器,需要结合具体的场景和数据具体分析。
从图的路径可以看出,虽然SGD到达的路径崎岖了点,但终究是很快就到了。观察Momentum的路径,相当于是SGD路径的一个优化,更加平滑了些。通过观察他们的公式也可以知道,Momentum是对SGD公式的一个优化。SGD倾向于在狭窄的沟谷上摆动,因为负梯度将沿着陡峭的一侧下降,而非沿着沟谷向最优点前进。动量则有助于加速梯度向正确的方向前进。
总结:
1.各算法的比较
2.为什么SGD会走“之字形”?其它算法为什么会比较平滑?
因为在此函数中梯度的方向并没有指向最小值的方向,SGD只是单纯的朝着梯度方向,放弃了对梯度准确性的追求,会使得其在 函数的形状非均向(比如y方向变化很大时,x方向变化很小 ),能迂回往复地寻找,效率很低。
其他算法因为虽然x轴方向上受到的力非常小,但是一直在同一方向上受力,所以朝同一个方向会有一定的加速。反过来,虽然y轴方向上受到的力很大,但是因为交互地受到正方向和反方向的力,它们会互相抵消,所以y轴方向上的速度不稳定。因此,和SGD时的情形相比,可以更快地朝x轴方向靠近,减弱“之”字形的变动程度。
3.Adam这么好,SGD是不是就用不到了?
虽然 Adam 优化器具有许多优点,例如快速收敛、自适应学习率和对稀疏数据的鲁棒性,但 SGD 并未被完全取代,仍然在许多场景下广泛使用。
(1)Adam 在某些任务中容易导致模型过拟合,因为其优化路径更快趋于局部最优。SGD 的噪声特性(梯度更新基于小批量)有助于逃离局部最优,从而提升泛化能力,尤其是在图像分类任务(如 ImageNet)中表现突出。(2)SGD 实现简单,对计算资源要求低。在参数和学习率的调节下,SGD 能表现出良好的鲁棒性。
(3)对于超大规模数据集和分布式训练,SGD 是首选,因为其计算和内存开销更低。
(4)在学长的博客中提到一个很重要的原因:算法固然美好,数据才是根本。理解数据对于设计算法的必要性。优化算法的演变历史,都是基于对数据的某种假设而进行的优化,那么某种算法是否有效,就要看你的数据是否符合该算法的胃口了。并且其总结为:Adam之流虽然说已经简化了调参,但是并没有一劳永逸地解决问题,默认参数虽然好,但也不是放之四海而皆准。因此,在充分理解数据的基础上,依然需要根据数据特性、算法特性进行充分的调参实验,找到自己炼丹的最优解。而这个时候,不论是Adam,还是SGD,都已经不重要了。
4. 5.
6.
附完整可运行代码
被优化函数为
的各类优化器2D可视化和拟合实验代码:
import copyfrom nndl import Op, Linear
import torch# =====将被优化函数实现为OptimizedFunction算子====================================================
class OptimizedFunction(Op):def __init__(self, w):super(OptimizedFunction, self).__init__()self.w = torch.as_tensor(w, dtype=torch.float32)self.params = {'x': torch.as_tensor(0, dtype=torch.float32)}self.grads = {'x': torch.as_tensor(0, dtype=torch.float32)}def forward(self, x):self.params['x'] = xreturn torch.matmul(self.w.T, torch.square(self.params['x']))def backward(self):self.grads['x'] = 2 * torch.multiply(self.w.T, self.params['x'])# =====训练函数 定义一个简易的训练函数,记录梯度下降过程中每轮的参数x和损失==============================================================
def train_f(model, optimizer, x_init, epoch):x = x_initall_x = []losses = []for i in range(epoch):all_x.append(copy.copy(x.numpy()))loss = model(x)losses.append(loss)model.backward()optimizer.step()x = model.params['x']return torch.as_tensor(all_x), losses# =======可视化函数===============================================
import numpy as np
import matplotlib.pyplot as pltclass Visualization(object):def __init__(self):x1 = np.arange(-5, 5, 0.1)x2 = np.arange(-5, 5, 0.1)x1, x2 = np.meshgrid(x1, x2)self.init_x = torch.as_tensor([x1, x2])def plot_2d(self, model, x, fig_name):fig, ax = plt.subplots(figsize=(10, 6))cp = ax.contourf(self.init_x[0], self.init_x[1], model(self.init_x.transpose(1, 0)),colors=['#e4007f', '#f19ec2', '#e86096', '#eb7aaa', '#f6c8dc', '#f5f5f5', '#000000'])c = ax.contour(self.init_x[0], self.init_x[1], model(self.init_x.transpose(1, 0)), colors='black')cbar = fig.colorbar(cp)ax.plot(x[:, 0], x[:, 1], '-o', color='#000000')ax.plot(0, 'r*', markersize=18, color='#fefefe')ax.set_xlabel('$x1$')ax.set_ylabel('$x2$')ax.set_xlim((-2, 5))ax.set_ylim((-2, 5))plt.savefig(fig_name)# =====调用train_f和Visualization,训练模型并可视化参数更新轨迹======================================
def train_and_plot_f(model, optimizer, epoch, fig_name):x_init = torch.as_tensor([3, 4], dtype=torch.float32)print('x1 initiate: {}, x2 initiate: {}'.format(x_init[0].numpy(), x_init[1].numpy()))x, losses = train_f(model, optimizer, x_init, epoch)losses = np.array(losses)# 展示x1、x2的更新轨迹vis = Visualization()vis.plot_2d(model, x, fig_name)# =========模型训练train函数================================================================
def train(data, num_epochs, batch_size, model, calculate_loss, optimizer, verbose=False):# 记录每个回合损失的变化epoch_loss = []# 记录每次迭代损失的变化iter_loss = []N = len(data)for epoch_id in range(num_epochs):# np.random.shuffle(data) #不再随机打乱数据# 将训练数据进行拆分,每个mini_batch包含batch_size条的数据mini_batches = [data[i:i+batch_size] for i in range(0, N, batch_size)]for iter_id, mini_batch in enumerate(mini_batches):# data中前两个分量为Xinputs = mini_batch[:, :-1]# data中最后一个分量为ylabels = mini_batch[:, -1:]# 前向计算outputs = model(inputs)# 计算损失loss = calculate_loss(outputs, labels).numpy()# 计算梯度model.backward(labels)# 梯度更新optimizer.step()iter_loss.append(loss)# verbose = True 则打印当前回合的损失if verbose:print('Epoch {:3d}, loss = {:.4f}'.format(epoch_id, np.mean(iter_loss)))epoch_loss.append(np.mean(iter_loss))return iter_loss, epoch_loss# =====优化过程可视化 定义plot_loss函数=================================================
def plot_loss(iter_loss, epoch_loss, fig_name):"""可视化损失函数的变化趋势"""plt.figure(figsize=(10, 4))ax1 = plt.subplot(121)ax1.plot(iter_loss, color='#e4007f')plt.title('iteration loss')ax2 = plt.subplot(122)ax2.plot(epoch_loss, color='#f19ec2')plt.title('epoch loss')plt.savefig(fig_name)plt.show()# ======训练并展示每个回合和每次迭代的损失变化情况=================================================
import torch.nn as nn
def train_and_plot(optimizer, fig_name):"""训练网络并画出损失函数的变化趋势输入:- optimizer:优化器"""# 定义均方差损失mse = nn.MSELoss()iter_loss, epoch_loss = train(data, num_epochs=30, batch_size=64, model=model, calculate_loss=mse, optimizer=optimizer)plot_loss(iter_loss, epoch_loss, fig_name)# =====模型训练与可视化:================================
# ###SGD=============================================
from nndl import SimpleBatchGD# 固定随机种子
torch.seed()
w = torch.as_tensor([0.2, 2])
model = OptimizedFunction(w)
opt = SimpleBatchGD(init_lr=0.2, model=model)
train_and_plot_f(model, opt, epoch=40, fig_name='opti-vis-para.pdf')# ##拟合=======
# 固定随机种子
torch.seed()
# 随机生成shape为(1000,2)的训练数据
X = torch.randn([1000, 2])
w = torch.as_tensor([0.5, 0.8])
w = torch.unsqueeze(w, dim=1)
noise = 0.01 * torch.rand([1000])
noise = torch.unsqueeze(noise, dim=1)
# 计算y
y = torch.matmul(X, w) + noise
# 打印X, y样本
print('X: ', X[0].numpy())
print('y: ', y[0].numpy())# X,y组成训练样本数据
data = torch.concat((X, y), dim=1)
print('input data shape: ', data.shape)
print('data: ', data[0].numpy())# 固定随机种子
torch.seed()
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = SimpleBatchGD(init_lr=0.01, model=model)
train_and_plot(opt, 'opti-loss.pdf')# ###=====AdaGrad================================
from nndl import Optimizer
class Adagrad(Optimizer):def __init__(self, init_lr, model, epsilon):super(Adagrad, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.epsilon = epsilondef adagrad(self, x, gradient_x, G, init_lr):G += gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):for key in self.model.params.keys():self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],self.model.grads[key],self.G[key],self.init_lr)# 固定随机种子
torch.seed()
w = torch.as_tensor([0.2, 2])
model2 = OptimizedFunction(w)
opt2 = Adagrad(init_lr=0.5, model=model2, epsilon=1e-7)
train_and_plot_f(model2, opt2, epoch=60, fig_name='opti-vis-para2.pdf')# ##拟合=======
# 固定随机种子
torch.seed()
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = Adagrad(init_lr=0.1, model=model, epsilon=1e-7)
train_and_plot(opt, 'opti-loss2.pdf')# ###PMSprop======================================
class RMSprop(Optimizer):def __init__(self, init_lr, model, beta, epsilon):super(RMSprop, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.beta = betaself.epsilon = epsilondef rmsprop(self, x, gradient_x, G, init_lr):"""rmsprop算法更新参数,G为迭代梯度平方的加权移动平均"""G = self.beta * G + (1 - self.beta) * gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],self.model.grads[key],self.G[key],self.init_lr)torch.seed()
w = torch.as_tensor([0.2, 2])
model3 = OptimizedFunction(w)
opt3 = RMSprop(init_lr=0.1, model=model3, beta=0.9, epsilon=1e-7)
train_and_plot_f(model3, opt3, epoch=50, fig_name='opti-vis-para3.pdf')# ##拟合===========
# 固定随机种子
torch.seed()
# 定义网络结构
model = Linear(2)
# 定义优化器
opt3 = RMSprop(init_lr=0.1, model=model, beta=0.9, epsilon=1e-7)
train_and_plot(opt3, 'opti-loss3.pdf')# ###动量法=====================================================
class Momentum(Optimizer):def __init__(self, init_lr, model, rho):super(Momentum, self).__init__(init_lr=init_lr, model=model)self.delta_x = {}for key in self.model.params.keys():self.delta_x[key] = 0self.rho = rhodef momentum(self, x, gradient_x, delta_x, init_lr):"""momentum算法更新参数,delta_x为梯度的加权移动平均"""delta_x = self.rho * delta_x - init_lr * gradient_xx += delta_xreturn x, delta_xdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],self.model.grads[key],self.delta_x[key],self.init_lr)# 固定随机种子
torch.seed()
w = torch.as_tensor([0.2, 2])
model4 = OptimizedFunction(w)
opt4 = Momentum(init_lr=0.01, model=model4, rho=0.9)
train_and_plot_f(model4, opt4, epoch=70, fig_name='opti-vis-para4.pdf')# ##拟合==========
# 固定随机种子
torch.seed()# 定义网络结构
model = Linear(2)
# 定义优化器
opt = Momentum(init_lr=0.01, model=model, rho=0.9)
train_and_plot(opt, 'opti-loss4.pdf')# ###Adam=========================================class Adam(Optimizer):def __init__(self, init_lr, model, beta1, beta2, epsilon):super(Adam, self).__init__(init_lr=init_lr, model=model)self.beta1 = beta1self.beta2 = beta2self.epsilon = epsilonself.M, self.G = {}, {}for key, param in self.model.params.items():self.M[key] = torch.zeros_like(param) # 确保与参数形状一致self.G[key] = torch.zeros_like(param) # 确保与参数形状一致self.t = 1def adam(self, x, gradient_x, G, M, t, init_lr):M = self.beta1 * M + (1 - self.beta1) * gradient_xG = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2M_hat = M / (1 - self.beta1 ** t)G_hat = G / (1 - self.beta2 ** t)t += 1x -= init_lr / (torch.sqrt(G_hat) + self.epsilon) * M_hatreturn x, G, M, tdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],self.model.grads[key],self.G[key],self.M[key],self.t,self.init_lr)# 修复后的代码使用方式
torch.manual_seed(42)
w = torch.as_tensor([0.2, 2], dtype=torch.float32)
model5 = OptimizedFunction(w)
opt5 = Adam(init_lr=0.2, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)
train_and_plot_f(model5, opt5, epoch=40, fig_name='opti-vis-para5.pdf')torch.manual_seed(42)
model = Linear(2)
opt5 = Adam(init_lr=0.1, model=model, beta1=0.9, beta2=0.99, epsilon=1e-7)
train_and_plot(opt5, 'opti-loss5.pdf')
nndl.py:
import math
from abc import abstractmethodimport numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F# 定义基础操作类
class Op(object):def __init__(self):passdef __call__(self, inputs):return self.forward(torch.as_tensor(inputs, dtype=torch.float32))def forward(self, inputs):raise NotImplementedErrordef backward(self, inputs):raise NotImplementedError# 优化器基类
class Optimizer(object):def __init__(self, init_lr, model):self.init_lr = init_lr# 指定优化器需要优化的模型self.model = model@abstractmethoddef step(self):passclass SimpleBatchGD(Optimizer):def __init__(self, init_lr, model):super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)def step(self):# 参数更新if isinstance(self.model.params, dict):for key in self.model.params.keys():self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]# 实现线性层算子
class Linear(Op):def __init__(self, input_size, weight_init=np.random.standard_normal, bias_init=torch.zeros):self.params = {}self.params['W'] = weight_init([input_size, 1])self.params['W'] = torch.as_tensor(self.params['W'],dtype=torch.float32)self.params['b'] = bias_init([1])self.inputs = Noneself.grads = {}def forward(self, inputs):self.inputs = inputsself.outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']return self.outputsdef backward(self, labels):K = self.inputs.shape[0]self.grads['W'] = 1./ K*torch.matmul(self.inputs.T, (self.outputs - labels))self.grads['b'] = 1./K* torch.sum(self.outputs-labels, dim=0)# 实现 Logistic 激活函数
class Logistic(Op):def __init__(self):super().__init__()self.inputs = Noneself.outputs = Noneself.params = Nonedef forward(self, inputs):outputs = 1.0 / (1.0 + torch.exp(-inputs))self.outputs = outputsreturn outputsdef backward(self, grads):# 计算Logistic激活函数对输入的导数outputs_grad_inputs = torch.multiply(self.outputs, (1.0 - self.outputs))return torch.multiply(grads, outputs_grad_inputs)# 定义多层感知机模型(MLP)带L2正则化
# 实现一个两层前馈神经网络
class Model_MLP_L2(Op):def __init__(self, input_size, hidden_size, output_size):# 线性层super().__init__()self.fc1 = Linear(input_size, hidden_size, name="fc1")# Logistic激活函数层self.act_fn1 = Logistic()self.fc2 = Linear(hidden_size, output_size, name="fc2")self.act_fn2 = Logistic()self.layers = [self.fc1, self.act_fn1, self.fc2, self.act_fn2]def __call__(self, X):return self.forward(X)# 前向计算def forward(self, X):z1 = self.fc1(X)a1 = self.act_fn1(z1)z2 = self.fc2(a1)a2 = self.act_fn2(z2)return a2# 反向计算def backward(self, loss_grad_a2):loss_grad_z2 = self.act_fn2.backward(loss_grad_a2)loss_grad_a1 = self.fc2.backward(loss_grad_z2)loss_grad_z1 = self.act_fn1.backward(loss_grad_a1)loss_grad_inputs = self.fc1.backward(loss_grad_z1)# 实现交叉熵损失函数
class BinaryCrossEntropyLoss(Op):def __init__(self, model):super().__init__()self.predicts = Noneself.labels = Noneself.num = Noneself.model = modeldef __call__(self, predicts, labels):return self.forward(predicts, labels)def forward(self, predicts, labels):self.predicts = predictsself.labels = labelsself.num = self.predicts.shape[0]loss = -1. / self.num * (torch.matmul(self.labels.t(), torch.log(self.predicts))+ torch.matmul((1 - self.labels.t()), torch.log(1 - self.predicts)))loss = torch.squeeze(loss, axis=1)return lossdef backward(self):# 计算损失函数对模型预测的导数loss_grad_predicts = -1.0 * (self.labels / self.predicts -(1 - self.labels) / (1 - self.predicts)) / self.num# 梯度反向传播self.model.backward(loss_grad_predicts)def make_moons(n_samples=1000, shuffle=True, noise=None):n_samples_out = n_samples // 2n_samples_in = n_samples - n_samples_outouter_circ_x = torch.cos(torch.linspace(0, math.pi, n_samples_out))outer_circ_y = torch.sin(torch.linspace(0, math.pi, n_samples_out))inner_circ_x = 1 - torch.cos(torch.linspace(0, math.pi, n_samples_in))inner_circ_y = 0.5 - torch.sin(torch.linspace(0, math.pi, n_samples_in))print('outer_circ_x.shape:', outer_circ_x.shape, 'outer_circ_y.shape:', outer_circ_y.shape)print('inner_circ_x.shape:', inner_circ_x.shape, 'inner_circ_y.shape:', inner_circ_y.shape)X = torch.stack([torch.cat([outer_circ_x, inner_circ_x]),torch.cat([outer_circ_y, inner_circ_y])],axis=1)print('after concat shape:', torch.cat([outer_circ_x, inner_circ_x]).shape)print('X shape:', X.shape)# 使用'torch. zeros'将第一类数据的标签全部设置为0# 使用'torch. ones'将第一类数据的标签全部设置为1y = torch.cat([torch.zeros([n_samples_out]), torch.ones([n_samples_in])])print('y shape:', y.shape)# 如果shuffle为True,将所有数据打乱if shuffle:# 使用'torch.randperm'生成一个数值在0到X.shape[0],随机排列的一维Tensor做索引值,用于打乱数据idx = torch.randperm(X.shape[0])X = X[idx]y = y[idx]# 如果noise不为None,则给特征值加入噪声if noise is not None:X += np.random.normal(0.0, noise, X.shape)return X, y# 新增优化器基类
class Optimizer(object):def __init__(self, init_lr, model):# 初始化学习率,用于参数更新的计算self.init_lr = init_lr# 指定优化器需要优化的模型self.model = model@abstractmethoddef step(self):passclass BatchGD(Optimizer):def __init__(self, init_lr, model):super(BatchGD, self).__init__(init_lr=init_lr, model=model)def step(self):# 参数更新for layer in self.model.layers: # 遍历所有层if isinstance(layer.params, dict):for key in layer.params.keys():layer.params[key] = layer.params[key] - self.init_lr * layer.grads[key]
被优化函数为
的2D可视化代码:
# coding: utf-8
import numpy as np
import matplotlib.pyplot as plt
from collections import OrderedDictclass SGD:"""随机梯度下降法(Stochastic Gradient Descent)"""def __init__(self, lr=0.01):self.lr = lrdef update(self, params, grads):for key in params.keys():params[key] -= self.lr * grads[key]class Momentum:"""Momentum SGD"""def __init__(self, lr=0.01, momentum=0.9):self.lr = lrself.momentum = momentumself.v = Nonedef update(self, params, grads):if self.v is None:self.v = {}for key, val in params.items():self.v[key] = np.zeros_like(val)for key in params.keys():self.v[key] = self.momentum * self.v[key] - self.lr * grads[key]params[key] += self.v[key]class Nesterov:"""Nesterov's Accelerated Gradient (http://arxiv.org/abs/1212.0901)"""def __init__(self, lr=0.01, momentum=0.9):self.lr = lrself.momentum = momentumself.v = Nonedef update(self, params, grads):if self.v is None:self.v = {}for key, val in params.items():self.v[key] = np.zeros_like(val)for key in params.keys():self.v[key] *= self.momentumself.v[key] -= self.lr * grads[key]params[key] += self.momentum * self.momentum * self.v[key]params[key] -= (1 + self.momentum) * self.lr * grads[key]class AdaGrad:"""AdaGrad"""def __init__(self, lr=0.01):self.lr = lrself.h = Nonedef update(self, params, grads):if self.h is None:self.h = {}for key, val in params.items():self.h[key] = np.zeros_like(val)for key in params.keys():self.h[key] += grads[key] * grads[key]params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)class RMSprop:"""RMSprop"""def __init__(self, lr=0.01, decay_rate=0.99):self.lr = lrself.decay_rate = decay_rateself.h = Nonedef update(self, params, grads):if self.h is None:self.h = {}for key, val in params.items():self.h[key] = np.zeros_like(val)for key in params.keys():self.h[key] *= self.decay_rateself.h[key] += (1 - self.decay_rate) * grads[key] * grads[key]params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)class Adam:"""Adam (http://arxiv.org/abs/1412.6980v8)"""def __init__(self, lr=0.001, beta1=0.9, beta2=0.999):self.lr = lrself.beta1 = beta1self.beta2 = beta2self.iter = 0self.m = Noneself.v = Nonedef update(self, params, grads):if self.m is None:self.m, self.v = {}, {}for key, val in params.items():self.m[key] = np.zeros_like(val)self.v[key] = np.zeros_like(val)self.iter += 1lr_t = self.lr * np.sqrt(1.0 - self.beta2 ** self.iter) / (1.0 - self.beta1 ** self.iter)for key in params.keys():self.m[key] += (1 - self.beta1) * (grads[key] - self.m[key])self.v[key] += (1 - self.beta2) * (grads[key] ** 2 - self.v[key])params[key] -= lr_t * self.m[key] / (np.sqrt(self.v[key]) + 1e-7)def f(x, y):return x ** 2 / 20.0 + y ** 2def df(x, y):return x / 10.0, 2.0 * yinit_pos = (-7.0, 2.0)
params = {}
params['x'], params['y'] = init_pos[0], init_pos[1]
grads = {}
grads['x'], grads['y'] = 0, 0optimizers = OrderedDict()
optimizers["SGD"] = SGD(lr=0.95)
optimizers["Momentum"] = Momentum(lr=0.1)
optimizers["AdaGrad"] = AdaGrad(lr=1.5)
optimizers["Adam"] = Adam(lr=0.3)idx = 1for key in optimizers:optimizer = optimizers[key]x_history = []y_history = []params['x'], params['y'] = init_pos[0], init_pos[1]for i in range(30):x_history.append(params['x'])y_history.append(params['y'])grads['x'], grads['y'] = df(params['x'], params['y'])optimizer.update(params, grads)x = np.arange(-10, 10, 0.01)y = np.arange(-5, 5, 0.01)X, Y = np.meshgrid(x, y)Z = f(X, Y)# for simple contour linemask = Z > 7Z[mask] = 0# plotplt.subplot(2, 2, idx)idx += 1plt.plot(x_history, y_history, 'o-', color="red")plt.contour(X, Y, Z) # 绘制等高线plt.ylim(-10, 10)plt.xlim(-10, 10)plt.plot(0, 0, '+')plt.title(key)plt.xlabel("x")plt.ylabel("y")plt.subplots_adjust(wspace=0, hspace=0) # 调整子图间距
plt.show()
被优化函数为
的3D图代码:
import torch
import numpy as np
import copy
from matplotlib import pyplot as plt
from matplotlib import animation
from itertools import zip_longestclass Op(object):def __init__(self):passdef __call__(self, inputs):return self.forward(inputs)# 输入:张量inputs# 输出:张量outputsdef forward(self, inputs):# return outputsraise NotImplementedError# 输入:最终输出对outputs的梯度outputs_grads# 输出:最终输出对inputs的梯度inputs_gradsdef backward(self, outputs_grads):# return inputs_gradsraise NotImplementedErrorclass Optimizer(object): # 优化器基类def __init__(self, init_lr, model):"""优化器类初始化"""# 初始化学习率,用于参数更新的计算self.init_lr = init_lr# 指定优化器需要优化的模型self.model = modeldef step(self):"""定义每次迭代如何更新参数"""passclass SimpleBatchGD(Optimizer):def __init__(self, init_lr, model):super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)def step(self):# 参数更新if isinstance(self.model.params, dict):for key in self.model.params.keys():self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]class Adagrad(Optimizer):def __init__(self, init_lr, model, epsilon):"""Adagrad 优化器初始化输入:- init_lr: 初始学习率 - model:模型,model.params存储模型参数值 - epsilon:保持数值稳定性而设置的非常小的常数"""super(Adagrad, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.epsilon = epsilondef adagrad(self, x, gradient_x, G, init_lr):"""adagrad算法更新参数,G为参数梯度平方的累计值。"""G += gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],self.model.grads[key],self.G[key],self.init_lr)class RMSprop(Optimizer):def __init__(self, init_lr, model, beta, epsilon):"""RMSprop优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- beta:衰减率- epsilon:保持数值稳定性而设置的常数"""super(RMSprop, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.beta = betaself.epsilon = epsilondef rmsprop(self, x, gradient_x, G, init_lr):"""rmsprop算法更新参数,G为迭代梯度平方的加权移动平均"""G = self.beta * G + (1 - self.beta) * gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],self.model.grads[key],self.G[key],self.init_lr)class Momentum(Optimizer):def __init__(self, init_lr, model, rho):"""Momentum优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- rho:动量因子"""super(Momentum, self).__init__(init_lr=init_lr, model=model)self.delta_x = {}for key in self.model.params.keys():self.delta_x[key] = 0self.rho = rhodef momentum(self, x, gradient_x, delta_x, init_lr):"""momentum算法更新参数,delta_x为梯度的加权移动平均"""delta_x = self.rho * delta_x - init_lr * gradient_xx += delta_xreturn x, delta_xdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],self.model.grads[key],self.delta_x[key],self.init_lr)class Adam(Optimizer):def __init__(self, init_lr, model, beta1, beta2, epsilon):"""Adam优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- beta1, beta2:移动平均的衰减率- epsilon:保持数值稳定性而设置的常数"""super(Adam, self).__init__(init_lr=init_lr, model=model)self.beta1 = beta1self.beta2 = beta2self.epsilon = epsilonself.M, self.G = {}, {}for key in self.model.params.keys():self.M[key] = 0self.G[key] = 0self.t = 1def adam(self, x, gradient_x, G, M, t, init_lr):"""adam算法更新参数输入:- x:参数- G:梯度平方的加权移动平均- M:梯度的加权移动平均- t:迭代次数- init_lr:初始学习率"""M = self.beta1 * M + (1 - self.beta1) * gradient_xG = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2M_hat = M / (1 - self.beta1 ** t)G_hat = G / (1 - self.beta2 ** t)t += 1x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hatreturn x, G, M, tdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],self.model.grads[key],self.G[key],self.M[key],self.t,self.init_lr)class OptimizedFunction3D(Op):def __init__(self):super(OptimizedFunction3D, self).__init__()self.params = {'x': 0}self.grads = {'x': 0}def forward(self, x):self.params['x'] = xreturn x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]def backward(self):x = self.params['x']gradient1 = 2 * x[0] + x[1]gradient2 = 2 * x[1] + 3 * x[1] ** 2 + x[0]grad1 = torch.Tensor([gradient1])grad2 = torch.Tensor([gradient2])self.grads['x'] = torch.cat([grad1, grad2])class Visualization3D(animation.FuncAnimation):""" 绘制动态图像,可视化参数更新轨迹 """def __init__(self, *xy_values, z_values, labels=[], colors=[], fig, ax, interval=600, blit=True, **kwargs):"""初始化3d可视化类输入:xy_values:三维中x,y维度的值z_values:三维中z维度的值labels:每个参数更新轨迹的标签colors:每个轨迹的颜色interval:帧之间的延迟(以毫秒为单位)blit:是否优化绘图"""self.fig = figself.ax = axself.xy_values = xy_valuesself.z_values = z_valuesframes = max(xy_value.shape[0] for xy_value in xy_values)self.lines = [ax.plot([], [], [], label=label, color=color, lw=2)[0]for _, label, color in zip_longest(xy_values, labels, colors)]super(Visualization3D, self).__init__(fig, self.animate, init_func=self.init_animation, frames=frames,interval=interval, blit=blit, **kwargs)def init_animation(self):# 数值初始化for line in self.lines:line.set_data([], [])# line.set_3d_properties(np.asarray([])) # 源程序中有这一行,加上会报错。 Edit by David 2022.12.4return self.linesdef animate(self, i):# 将x,y,z三个数据传入,绘制三维图像for line, xy_value, z_value in zip(self.lines, self.xy_values, self.z_values):line.set_data(xy_value[:i, 0], xy_value[:i, 1])line.set_3d_properties(z_value[:i])return self.linesdef train_f(model, optimizer, x_init, epoch):x = x_initall_x = []losses = []for i in range(epoch):all_x.append(copy.copy(x.numpy())) # 浅拷贝 改为 深拷贝, 否则List的原值会被改变。 Edit by David 2022.12.4.loss = model(x)losses.append(loss)model.backward()optimizer.step()x = model.params['x']return torch.Tensor(np.array(all_x)), losses# 构建5个模型,分别配备不同的优化器
model1 = OptimizedFunction3D()
opt_gd = SimpleBatchGD(init_lr=0.01, model=model1)model2 = OptimizedFunction3D()
opt_adagrad = Adagrad(init_lr=0.5, model=model2, epsilon=1e-7)model3 = OptimizedFunction3D()
opt_rmsprop = RMSprop(init_lr=0.1, model=model3, beta=0.9, epsilon=1e-7)model4 = OptimizedFunction3D()
opt_momentum = Momentum(init_lr=0.01, model=model4, rho=0.9)model5 = OptimizedFunction3D()
opt_adam = Adam(init_lr=0.1, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)models = [model1, model2, model3, model4, model5]
opts = [opt_gd, opt_adagrad, opt_rmsprop, opt_momentum, opt_adam]x_all_opts = []
z_all_opts = []# 使用不同优化器训练for model, opt in zip(models, opts):x_init = torch.FloatTensor([2, 3])x_one_opt, z_one_opt = train_f(model, opt, x_init, 150) # epoch# 保存参数值x_all_opts.append(x_one_opt.numpy())z_all_opts.append(np.squeeze(z_one_opt))# 使用numpy.meshgrid生成x1,x2矩阵,矩阵的每一行为[-3, 3],以0.1为间隔的数值
x1 = np.arange(-3, 3, 0.1)
x2 = np.arange(-3, 3, 0.1)
x1, x2 = np.meshgrid(x1, x2)
init_x = torch.Tensor(np.array([x1, x2]))model = OptimizedFunction3D()# 绘制 f_3d函数 的 三维图像
fig = plt.figure()
ax = plt.axes(projection='3d')
X = init_x[0].numpy()
Y = init_x[1].numpy()
Z = model(init_x).numpy() # 改为 model(init_x).numpy() David 2022.12.4
ax.plot_surface(X, Y, Z, cmap='rainbow')ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('f(x1,x2)')labels = ['SGD', 'AdaGrad', 'RMSprop', 'Momentum', 'Adam']
colors = ['#f6373c', '#f6f237', '#45f637', '#37f0f6', '#000000']animator = Visualization3D(*x_all_opts, z_values=z_all_opts, labels=labels, colors=colors, fig=fig, ax=ax)
ax.legend(loc='upper left')plt.show()
被优化函数为
的3D可视化图:
import torch
import numpy as np
import copy
from matplotlib import pyplot as plt
from matplotlib import animation
from itertools import zip_longest
from matplotlib import cmclass Op(object):def __init__(self):passdef __call__(self, inputs):return self.forward(inputs)# 输入:张量inputs# 输出:张量outputsdef forward(self, inputs):# return outputsraise NotImplementedError# 输入:最终输出对outputs的梯度outputs_grads# 输出:最终输出对inputs的梯度inputs_gradsdef backward(self, outputs_grads):# return inputs_gradsraise NotImplementedErrorclass Optimizer(object): # 优化器基类def __init__(self, init_lr, model):"""优化器类初始化"""# 初始化学习率,用于参数更新的计算self.init_lr = init_lr# 指定优化器需要优化的模型self.model = modeldef step(self):"""定义每次迭代如何更新参数"""passclass SimpleBatchGD(Optimizer):def __init__(self, init_lr, model):super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)def step(self):# 参数更新if isinstance(self.model.params, dict):for key in self.model.params.keys():self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]class Adagrad(Optimizer):def __init__(self, init_lr, model, epsilon):"""Adagrad 优化器初始化输入:- init_lr: 初始学习率 - model:模型,model.params存储模型参数值 - epsilon:保持数值稳定性而设置的非常小的常数"""super(Adagrad, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.epsilon = epsilondef adagrad(self, x, gradient_x, G, init_lr):"""adagrad算法更新参数,G为参数梯度平方的累计值。"""G += gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],self.model.grads[key],self.G[key],self.init_lr)class RMSprop(Optimizer):def __init__(self, init_lr, model, beta, epsilon):"""RMSprop优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- beta:衰减率- epsilon:保持数值稳定性而设置的常数"""super(RMSprop, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.beta = betaself.epsilon = epsilondef rmsprop(self, x, gradient_x, G, init_lr):"""rmsprop算法更新参数,G为迭代梯度平方的加权移动平均"""G = self.beta * G + (1 - self.beta) * gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],self.model.grads[key],self.G[key],self.init_lr)class Momentum(Optimizer):def __init__(self, init_lr, model, rho):"""Momentum优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- rho:动量因子"""super(Momentum, self).__init__(init_lr=init_lr, model=model)self.delta_x = {}for key in self.model.params.keys():self.delta_x[key] = 0self.rho = rhodef momentum(self, x, gradient_x, delta_x, init_lr):"""momentum算法更新参数,delta_x为梯度的加权移动平均"""delta_x = self.rho * delta_x - init_lr * gradient_xx += delta_xreturn x, delta_xdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],self.model.grads[key],self.delta_x[key],self.init_lr)class Adam(Optimizer):def __init__(self, init_lr, model, beta1, beta2, epsilon):"""Adam优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- beta1, beta2:移动平均的衰减率- epsilon:保持数值稳定性而设置的常数"""super(Adam, self).__init__(init_lr=init_lr, model=model)self.beta1 = beta1self.beta2 = beta2self.epsilon = epsilonself.M, self.G = {}, {}for key in self.model.params.keys():self.M[key] = 0self.G[key] = 0self.t = 1def adam(self, x, gradient_x, G, M, t, init_lr):"""adam算法更新参数输入:- x:参数- G:梯度平方的加权移动平均- M:梯度的加权移动平均- t:迭代次数- init_lr:初始学习率"""M = self.beta1 * M + (1 - self.beta1) * gradient_xG = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2M_hat = M / (1 - self.beta1 ** t)G_hat = G / (1 - self.beta2 ** t)t += 1x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hatreturn x, G, M, tdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],self.model.grads[key],self.G[key],self.M[key],self.t,self.init_lr)class OptimizedFunction3D(Op):def __init__(self):super(OptimizedFunction3D, self).__init__()self.params = {'x': 0}self.grads = {'x': 0}def forward(self, x):self.params['x'] = xreturn - x[0] * x[0] / 2 + x[1] * x[1] / 1 # x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]def backward(self):x = self.params['x']gradient1 = - 2 * x[0] / 2gradient2 = 2 * x[1] / 1grad1 = torch.Tensor([gradient1])grad2 = torch.Tensor([gradient2])self.grads['x'] = torch.cat([grad1, grad2])class Visualization3D(animation.FuncAnimation):""" 绘制动态图像,可视化参数更新轨迹 """def __init__(self, *xy_values, z_values, labels=[], colors=[], fig, ax, interval=100, blit=True, **kwargs):"""初始化3d可视化类输入:xy_values:三维中x,y维度的值z_values:三维中z维度的值labels:每个参数更新轨迹的标签colors:每个轨迹的颜色interval:帧之间的延迟(以毫秒为单位)blit:是否优化绘图"""self.fig = figself.ax = axself.xy_values = xy_valuesself.z_values = z_valuesframes = max(xy_value.shape[0] for xy_value in xy_values)# , marker = 'o'self.lines = [ax.plot([], [], [], label=label, color=color, lw=2)[0]for _, label, color in zip_longest(xy_values, labels, colors)]print(self.lines)super(Visualization3D, self).__init__(fig, self.animate, init_func=self.init_animation, frames=frames,interval=interval, blit=blit, **kwargs)def init_animation(self):# 数值初始化for line in self.lines:line.set_data([], [])# line.set_3d_properties(np.asarray([])) # 源程序中有这一行,加上会报错。 Edit by David 2022.12.4return self.linesdef animate(self, i):# 将x,y,z三个数据传入,绘制三维图像for line, xy_value, z_value in zip(self.lines, self.xy_values, self.z_values):line.set_data(xy_value[:i, 0], xy_value[:i, 1])line.set_3d_properties(z_value[:i])return self.linesdef train_f(model, optimizer, x_init, epoch):x = x_initall_x = []losses = []for i in range(epoch):all_x.append(copy.deepcopy(x.numpy())) # 浅拷贝 改为 深拷贝, 否则List的原值会被改变。 Edit by David 2022.12.4.loss = model(x)losses.append(loss)model.backward()optimizer.step()x = model.params['x']return torch.Tensor(np.array(all_x)), losses# 构建5个模型,分别配备不同的优化器
model1 = OptimizedFunction3D()
opt_gd = SimpleBatchGD(init_lr=0.05, model=model1)model2 = OptimizedFunction3D()
opt_adagrad = Adagrad(init_lr=0.05, model=model2, epsilon=1e-7)model3 = OptimizedFunction3D()
opt_rmsprop = RMSprop(init_lr=0.05, model=model3, beta=0.9, epsilon=1e-7)model4 = OptimizedFunction3D()
opt_momentum = Momentum(init_lr=0.05, model=model4, rho=0.9)model5 = OptimizedFunction3D()
opt_adam = Adam(init_lr=0.05, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)models = [model5, model2, model3, model4, model1]
opts = [opt_adam, opt_adagrad, opt_rmsprop, opt_momentum, opt_gd]x_all_opts = []
z_all_opts = []# 使用不同优化器训练for model, opt in zip(models, opts):x_init = torch.FloatTensor([0.00001, 0.5])x_one_opt, z_one_opt = train_f(model, opt, x_init, 100) # epoch# 保存参数值x_all_opts.append(x_one_opt.numpy())z_all_opts.append(np.squeeze(z_one_opt))# 使用numpy.meshgrid生成x1,x2矩阵,矩阵的每一行为[-3, 3],以0.1为间隔的数值
x1 = np.arange(-1, 2, 0.01)
x2 = np.arange(-1, 1, 0.05)
x1, x2 = np.meshgrid(x1, x2)
init_x = torch.Tensor(np.array([x1, x2]))model = OptimizedFunction3D()# 绘制 f_3d函数 的 三维图像
fig = plt.figure()
ax = plt.axes(projection='3d')
X = init_x[0].numpy()
Y = init_x[1].numpy()
Z = model(init_x).numpy() # 改为 model(init_x).numpy() David 2022.12.4
surf = ax.plot_surface(X, Y, Z, edgecolor='grey', cmap=cm.coolwarm)
# fig.colorbar(surf, shrink=0.5, aspect=1)
ax.set_zlim(-3, 2)
ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('f(x1,x2)')labels = ['Adam', 'AdaGrad', 'RMSprop', 'Momentum', 'SGD']
colors = ['#8B0000', '#0000FF', '#000000', '#008B00', '#FF0000']animator = Visualization3D(*x_all_opts, z_values=z_all_opts, labels=labels, colors=colors, fig=fig, ax=ax)
ax.legend(loc='upper right')plt.show()
被优化函数为
的3D可视化图(期待改进):
import animator
import torch
import numpy as np
import copy
from matplotlib import pyplot as plt
from matplotlib import animation
from itertools import zip_longest
from matplotlib import cm
from matplotlib.animation import FuncAnimationclass Op(object):def __init__(self):passdef __call__(self, inputs):return self.forward(inputs)# 输入:张量inputs# 输出:张量outputsdef forward(self, inputs):# return outputsraise NotImplementedError# 输入:最终输出对outputs的梯度outputs_grads# 输出:最终输出对inputs的梯度inputs_gradsdef backward(self, outputs_grads):# return inputs_gradsraise NotImplementedErrorclass Optimizer(object): # 优化器基类def __init__(self, init_lr, model):"""优化器类初始化"""# 初始化学习率,用于参数更新的计算self.init_lr = init_lr# 指定优化器需要优化的模型self.model = modeldef step(self):"""定义每次迭代如何更新参数"""passclass SimpleBatchGD(Optimizer):def __init__(self, init_lr, model):super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)def step(self):# 参数更新if isinstance(self.model.params, dict):for key in self.model.params.keys():self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]class Adagrad(Optimizer):def __init__(self, init_lr, model, epsilon):"""Adagrad 优化器初始化输入:- init_lr: 初始学习率 - model:模型,model.params存储模型参数值 - epsilon:保持数值稳定性而设置的非常小的常数"""super(Adagrad, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.epsilon = epsilondef adagrad(self, x, gradient_x, G, init_lr):"""adagrad算法更新参数,G为参数梯度平方的累计值。"""G += gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],self.model.grads[key],self.G[key],self.init_lr)class RMSprop(Optimizer):def __init__(self, init_lr, model, beta, epsilon):"""RMSprop优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- beta:衰减率- epsilon:保持数值稳定性而设置的常数"""super(RMSprop, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.beta = betaself.epsilon = epsilondef rmsprop(self, x, gradient_x, G, init_lr):"""rmsprop算法更新参数,G为迭代梯度平方的加权移动平均"""G = self.beta * G + (1 - self.beta) * gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],self.model.grads[key],self.G[key],self.init_lr)class Momentum(Optimizer):def __init__(self, init_lr, model, rho):"""Momentum优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- rho:动量因子"""super(Momentum, self).__init__(init_lr=init_lr, model=model)self.delta_x = {}for key in self.model.params.keys():self.delta_x[key] = 0self.rho = rhodef momentum(self, x, gradient_x, delta_x, init_lr):"""momentum算法更新参数,delta_x为梯度的加权移动平均"""delta_x = self.rho * delta_x - init_lr * gradient_xx += delta_xreturn x, delta_xdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],self.model.grads[key],self.delta_x[key],self.init_lr)class Adam(Optimizer):def __init__(self, init_lr, model, beta1, beta2, epsilon):"""Adam优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- beta1, beta2:移动平均的衰减率- epsilon:保持数值稳定性而设置的常数"""super(Adam, self).__init__(init_lr=init_lr, model=model)self.beta1 = beta1self.beta2 = beta2self.epsilon = epsilonself.M, self.G = {}, {}for key in self.model.params.keys():self.M[key] = 0self.G[key] = 0self.t = 1def adam(self, x, gradient_x, G, M, t, init_lr):"""adam算法更新参数输入:- x:参数- G:梯度平方的加权移动平均- M:梯度的加权移动平均- t:迭代次数- init_lr:初始学习率"""M = self.beta1 * M + (1 - self.beta1) * gradient_xG = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2M_hat = M / (1 - self.beta1 ** t)G_hat = G / (1 - self.beta2 ** t)t += 1x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hatreturn x, G, M, tdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],self.model.grads[key],self.G[key],self.M[key],self.t,self.init_lr)class OptimizedFunction3D(Op):def __init__(self):super(OptimizedFunction3D, self).__init__()self.params = {'x': 0}self.grads = {'x': 0}def forward(self, x):self.params['x'] = xreturn x[0] * x[0] / 20 + x[1] * x[1] / 1 # x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]def backward(self):x = self.params['x']gradient1 = 2 * x[0] / 20gradient2 = 2 * x[1] / 1grad1 = torch.Tensor([gradient1])grad2 = torch.Tensor([gradient2])self.grads['x'] = torch.cat([grad1, grad2])class Visualization3D(animation.FuncAnimation):"""绘制动态图像,可视化参数更新轨迹"""def __init__(self, *xy_values, z_values, labels=[], colors=[], fig, ax, interval=100, blit=True, **kwargs):"""初始化3D可视化类输入:xy_values:三维中x,y维度的值z_values:三维中z维度的值labels:每个参数更新轨迹的标签colors:每个轨迹的颜色interval:帧之间的延迟(以毫秒为单位)blit:是否优化绘图"""self.fig = figself.ax = axself.xy_values = xy_valuesself.z_values = z_valuesself.surf = None # 曲面图初始化为空frames = max(xy_value.shape[0] for xy_value in xy_values)self.lines = [ax.plot([], [], [], label=label, color=color, lw=2)[0]for _, label, color in zip_longest(xy_values, labels, colors)]self.points = [ax.plot([], [], [], color=color, markeredgewidth=1, markeredgecolor='black', marker='o')[0]for _, color in zip_longest(xy_values, colors)]super(Visualization3D, self).__init__(fig, self.animate, init_func=self.init_animation, frames=frames,interval=interval, blit=blit, **kwargs)def init_animation(self):# 数值初始化for line in self.lines:line.set_data([], [])for point in self.points:point.set_data([], [])if self.surf is not None:self.surf.remove()self.surf = None # 确保清除之前的曲面return self.points + self.linesdef animate(self, i):try:print(f"Frame {i}") # 打印当前帧号for line, xy_value, z_value in zip(self.lines, self.xy_values, self.z_values):line.set_data(xy_value[:i, 0], xy_value[:i, 1])line.set_3d_properties(z_value[:i])for point, xy_value, z_value in zip(self.points, self.xy_values, self.z_values):point.set_data(xy_value[i, 0], xy_value[i, 1])point.set_3d_properties(z_value[i])if self.surf is not None:self.surf.remove() # 移除前一帧的曲面x = self.xy_values[0][:i, 0]y = self.xy_values[0][:i, 1]z = self.z_values[0][:i]X, Y = np.meshgrid(x, y)Z = np.reshape(z, (len(x), len(y)))self.surf = self.ax.plot_surface(X, Y, Z, color='gray', alpha=0.5, rstride=1, cstride=1)return self.points + self.lines + [self.surf]except Exception as e:print(f"Error in frame {i}: {e}")raisedef train_f(model, optimizer, x_init, epoch):x = x_initall_x = []losses = []for i in range(epoch):all_x.append(copy.deepcopy(x.numpy())) # 浅拷贝 改为 深拷贝, 否则List的原值会被改变。 Edit by David 2022.12.4.loss = model(x)losses.append(loss)model.backward()optimizer.step()x = model.params['x']return torch.Tensor(np.array(all_x)), losses# 构建5个模型,分别配备不同的优化器
model1 = OptimizedFunction3D()
opt_gd = SimpleBatchGD(init_lr=0.95, model=model1)model2 = OptimizedFunction3D()
opt_adagrad = Adagrad(init_lr=1.5, model=model2, epsilon=1e-7)model3 = OptimizedFunction3D()
opt_rmsprop = RMSprop(init_lr=0.05, model=model3, beta=0.9, epsilon=1e-7)model4 = OptimizedFunction3D()
opt_momentum = Momentum(init_lr=0.1, model=model4, rho=0.9)model5 = OptimizedFunction3D()
opt_adam = Adam(init_lr=0.3, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)models = [model1, model2, model3, model4, model5]
opts = [opt_gd, opt_adagrad, opt_rmsprop, opt_momentum, opt_adam]x_all_opts = [] # 存储每种优化器的参数轨迹
z_all_opts = [] # 存储每种优化器的函数值轨迹# 使用不同优化器训练
for model, opt in zip(models, opts):x_init = torch.FloatTensor([-7, 2]) # 初始值x_one_opt, z_one_opt = train_f(model, opt, x_init, 100) # 训练 100 个 epoch# 保存参数值x_all_opts.append(x_one_opt.numpy()) # 转为 NumPy 数组,形状为 (T, 2)z_all_opts.append(np.squeeze(z_one_opt)) # 转为 NumPy 数组,形状为 (T,)# print("x_all_opts:", x_all_opts)
# print("z_all_opts:", z_all_opts)# 使用numpy.meshgrid生成x1,x2矩阵
x1 = np.arange(-10, 10, 0.01)
x2 = np.arange(-5, 5, 0.01)
x1, x2 = np.meshgrid(x1, x2)# 将x1和x2作为输入,堆叠成形状为 (2, M, N)
init_x = torch.Tensor(np.stack([x1, x2], axis=0)) # 形状为 (2, M, N)# 假设模型已经定义
model = OptimizedFunction3D()# 确保模型能处理形状为 (2, M, N) 的输入
Z = model(init_x)
if isinstance(Z, torch.Tensor): # 如果是PyTorch张量,转换为NumPy数组Z = Z.detach().numpy()# 确保 Z 的形状和 x1, x2 一致
Z = Z.reshape(x1.shape)# 绘制三维表面
fig = plt.figure()
ax = plt.axes(projection='3d')
surf = ax.plot_surface(x1, x2, Z, cmap='viridis', edgecolor='none', alpha=0.6)# 设置标题和坐标轴标签
ax.set_title('Optimized Function 3D')
ax.set_xlabel('X1')
ax.set_ylabel('X2')
ax.set_zlabel('Z')# 添加颜色条
fig.colorbar(surf)# 每种优化器的训练轨迹
labels = ['SGD', 'Adagrad', 'RMSprop', 'Momentum', 'Adam']
colors = ['r', 'g', 'b', 'c', 'm']# 假设 x_all_opts 和 z_all_opts 是训练过程中收集的轨迹点
# x_all_opts[i] 是形状 (T, 2) 的数组,表示第 i 种优化器 T 步的 (x1, x2) 参数
# z_all_opts[i] 是形状 (T,) 的数组,表示每步对应的函数值 z
# x_all_opts = [...] # 填入实际数据
# z_all_opts = [...] # 填入实际数据# 初始化小球的位置
balls = []
for color in colors:ball, = ax.plot([], [], [], 'o', color=color, markersize=6)balls.append(ball)# 初始化小球和轨迹
scatters = [] # 保存小球的列表
lines = [] # 保存轨迹线的列表for i in range(len(x_all_opts)):scatter = ax.scatter(x_all_opts[i][0, 0],x_all_opts[i][0, 1],z_all_opts[i][0],color=colors[i],s=50, # 小球大小label=labels[i])scatters.append(scatter)line, = ax.plot([], [], [],color=colors[i],linewidth=1.5,alpha=0.8)lines.append(line)# 添加图例到右上角
ax.legend(loc="upper right")# 更新函数
def update(frame):updated_artists = [] # 存储更新的对象for i in range(len(scatters)):# 更新小球位置scatters[i]._offsets3d = ([x_all_opts[i][frame, 0]],[x_all_opts[i][frame, 1]],[z_all_opts[i][frame]],)# 更新轨迹线lines[i].set_data(x_all_opts[i][:frame + 1, 0], # X 轨迹x_all_opts[i][:frame + 1, 1], # Y 轨迹)lines[i].set_3d_properties(z_all_opts[i][:frame + 1]) # Z 轨迹# 添加到更新列表updated_artists.append(scatters[i])updated_artists.append(lines[i])return updated_artists # 返回更新的对象# 创建动画
num_frames = max(len(x) for x in x_all_opts) # 获取最长的轨迹步数
ani = FuncAnimation(fig, update, frames=num_frames, interval=100, blit=True)# 显示图像
plt.show()
# animator.save('teaser' + '.gif', writer='imagemagick', fps=10) # 效果不好,估计被挡住了…… 有待进一步提高 Edit by David 2022.12.4
# save不好用,不费劲了,安装个软件做gif https://pc.qq.com/detail/13/detail_23913.html
参考:
[1]NNDL 实验八 网络优化与正则化(3)不同优化算法比较_2d可视化实验与简单拟合实验-CSDN博客
[2]NNDL实验 优化算法3D轨迹 鱼书例题3D版_优化算法3d展示-CSDN博客
[3]NNDL实验 优化算法3D轨迹 复现cs231经典动画_优化算法寻优过程3d-CSDN博客
[4]NNDL实验 优化算法3D轨迹 pytorch版_nndl 实验三 将数据转换为 pytorch 张量-CSDN博客
[5]飞桨AI Studio星河社区-人工智能学习与实训社区
[6]神经网络与深度学习
[7]NNDL 作业11:优化算法比较_cifar10 sgd和adam-CSDN博客
这次是深度学习的最后一次实验啦(*^▽^*)完结撒花❀❀❀
在完成这门深度学习与神经网络课程的最后一次实验后,我感到收获颇丰。通过亲手实践和比较不同的神经网络优化算法,我对这些算法的内部机制和实际应用有了更深刻的理解。实验过程中,我不仅学会了如何实现和调整这些算法,还学会了如何根据实验结果分析它们的优缺点和适用场景。这些经验对于我未来在机器学习和人工智能领域的研究和工作无疑是宝贵的财富。
此外,在这学期的课程中我也体会到了实验过程中的挑战和乐趣。每次实验都像是一次探险,充满了未知和可能性。当看到算法按照预期工作,或者找到了更好的参数组合时,那种成就感和兴奋感是难以言表的。同时,遇到问题和困难时,通过查阅资料、讨论和思考找到解决方案的过程,也锻炼了我的问题解决能力和批判性思维。虽然作业多了那么一丢丢,但是收获真的大大滴!
我也遇到了一个讲课非常好的老师,非常的认真敬业,教会了我很多东西。学完这门课后,发现自己这学期读了很多篇论文。之前看论文图感觉蒙蒙的,现在再也不怕啦。也学会了很多的应用,学到了各种知识。遇到一个好的老师是多么重要呀!(#^.^#)
这门课程不仅让我掌握了深度学习和神经网络的核心技术,还培养了我独立思考和解决问题的能力。我将这些经验视为我职业生涯中的宝贵财富,并期待在未来的学习和工作中继续探索和应用这些知识!随着人工智能技术的不断发展,我相信这些技能将帮助我在这一领域取得更大的成就!
撒有哪啦~
相关文章:

深度学习实验十七 优化算法比较
目录 一、优化算法的实验设定 1.1 2D可视化实验(被优化函数为) 1.2 简单拟合实验 二、学习率调整 2.1 AdaGrad算法 2.2 RMSprop算法 三、梯度修正估计 3.1 动量法 3.2 Adam算法 四、被优化函数变为的2D可视化 五、不同优化器的3D可视化对比 …...

一个双非选手的秋招总结
个人bg介绍 25届双非本硕(非杭电深大,垫底双非),两段实习经历,本科没学过Java,有c语言和408基础;2023年10月份中途转语言,Java速成选手。 战绩总结:实习秋招面试总论次…...
如何提高永磁电动机的节电效果
在现代工业和家庭应用中,永磁电动机因其优越的性能和节能特性,逐渐成为主流选择。随着能源日益紧缺和环境问题的日益严重,寻求高效的电动机节能方案显得尤为重要。 一、永磁电动机的基本原理 永磁电动机的核心是永磁体,这些永磁…...
在一个服务器上抓取 Docker 镜像并在另一个服务器上运行
要在一个服务器上抓取 Docker 镜像并在另一个服务器上运行,您可以按照以下步骤进行操作: 1. 保存 Docker 镜像 在源服务器上,您可以使用 docker save 命令将 Docker 镜像保存为一个 tar 文件。例如,如果您的镜像名称是 face_det…...

开源轮子 - Logback 和 Slf4j
spring boot内置:Logback 文章目录 spring boot内置:Logback一:Logback强在哪?二:简单使用三:把 log4j 转成 logback四:日志门面SLF4J1:什么是SLF4J2:SLF4J 解决了什么痛…...

内部知识库的未来展望:技术融合与用户体验的双重升级
在当今数字化飞速发展的时代,企业内部知识库作为知识管理的关键载体,正站在变革的十字路口,即将迎来技术融合与用户体验双重升级的崭新时代,这一系列变化将深度重塑企业知识管理的格局。 一、技术融合:开启知识管理新…...

【Linux系列】Shell 命令:`echo ““ > img.sh`及其应用
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

【RAG实战】语言模型基础
语言模型赋予了计算机理解和生成人类语言的能力。它结合了统计学原理和深度神经网络技术,通过对大量的样本数据进行复杂的概率分布分析来学习语言结构的内在模式和相关性。具体地,语言模型可根据上下文中已出现的词序列,使用概率推断来预测接…...

【MySQL】7.0 入门学习(七)——MySQL基本指令:帮助、清除输入、查询等
1.0 help ? 帮助指令,查询某个指令的解释、用法、说明等。详情参考博文: 【数据库】6.0 MySQL入门学习(六)——MySQL启动与停止、官方手册、文档查询 https://www.cnblogs.com/xiaofu007/p/10301005.html 2.0 在cmd命…...

我的 2024 年终总结
2024 年,我离开了待了两年的互联网公司,来到了一家聚焦教育机器人和激光切割机的公司,没错,是一家硬件公司,从未接触过的领域,但这还不是我今年最重要的里程碑事件 5 月份的时候,正式提出了离职…...

STM32CUBEMX+STM32H743ZIT6+IAP+UART在线升级初始化和代码解析
1、STM32H7带的ITCM,DTCM,AXI SRAM,SRAM1,SRAM2,SRAM3,SRAM4和备份SRAM五块。 其中, ①TCM区包括ITCM和DTCM,这两个是直连CPU的。 速率与CPU一致,最高能到480MHz。 DTCM地…...

半连接转内连接 | OceanBase SQL 查询改写
查询优化器是关系型数据库系统的核心模块,是数据库内核开发的重点和难点,也是衡量整个数据库系统成熟度的“试金石”。为了帮助大家更好地理解 OceanBase 查询优化器,我们撰写了查询改写系列文章,带大家更好地掌握查询改写的精髓&…...

Git使用经历
目录 1、先创建文件夹 2、仓库初始化 3、配置gitee用户名和密码 4、克隆指定仓库的中指定分支到本地仓库 5、查看当前所在分支、切换分支 6、查看状态,判断是否有修改 7、把更新的内容添加到缓存区 8、把缓存区的数据提交 9、把数据推送到远程仓库 10、把…...

永磁同步电机控制算法-自适应带宽LADRC转速控制器
一、原理介绍 设计了自适应带宽 LADRC 控制方法,继承了 LADRC 优点的同时,加入自适应带宽控制,提出运用 Softsign 函数设计带宽自适应函数,根据电机转速自动调节控制带宽,解决了永磁同步电机在复杂且多变的环境下受到…...

基于springboot+vue实现的博物馆游客预约系统 (源码+L文+ppt)4-127
摘 要 旅游行业的快速发展使得博物馆游客预约系统成为了一个必不可少的工具。基于Java的博物馆游客预约系统旨在提供高效、准确和便捷的适用博物馆游客预约服务。本文讲述了基于java语言开发,后台数据库选择MySQL进行数据的存储。该软件的主要功能是进行博物馆游客…...
LeetCode 1705.吃苹果的最大数目:贪心(优先队列) - 清晰题解
【LetMeFly】1705.吃苹果的最大数目:贪心(优先队列) - 清晰题解 力扣题目链接:https://leetcode.cn/problems/maximum-number-of-eaten-apples/ 有一棵特殊的苹果树,一连 n 天,每天都可以长出若干个苹果。在第 i 天,…...
vim多窗格
vim打开文件分为三个阶段:buffer、window与tab buffer就是在同一个界面打开的文件window就是使用水平分割与垂直分割的窗口tab则是可以是上述两者的总集合 buffer :e filename在已打开文件的界面中再打开一个新文件,显示这个新文件,原文件被隐…...

ubuntu paddle ocr 部署bug问题解决
ubuntu paddle ocr 部署会出现异常报错。 尝试安装以下版本: pip install paddlepaddle2.5.2 -i https://pypi.tuna.tsinghua.edu.cn/simpl 助力快速掌握数据集的信息和使用方式。 数据可以如此美好!...

OpenFeign快速入门 示例:黑马商城
使用起因 之前我们利用了Nacos实现了服务的治理,利用RestTemplate实现了服务的远程调用。这样一来购物车虽然通过远程调用实现了调用商品服务的方法,但是远程调用的代码太复杂了: 解决方法 并且这种调用方式比较复杂,一会儿远程调用,一会儿本地调用。 因…...

【C++】ceil 和 floor 函数的实现与分析
博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 💯前言💯ceil 和 floor 函数的基础介绍1. ceil 函数定义与功能示例代码输出结果功能分析使用场景 2. floor 函数定义与功能示例代码输出结果功能分析使用场景 💯自行实现…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...

《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...

Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...

Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)
题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...

【UE5 C++】通过文件对话框获取选择文件的路径
目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 ,这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器,右键点击 .uproject 文件,选择 "Generate Visual Studio project files",重…...

yaml读取写入常见错误 (‘cannot represent an object‘, 117)
错误一:yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因,后面把yaml.safe_dump直接替换成yaml.dump,确实能保存,但出现乱码: 放弃yaml.dump,又切…...

PH热榜 | 2025-06-08
1. Thiings 标语:一套超过1900个免费AI生成的3D图标集合 介绍:Thiings是一个不断扩展的免费AI生成3D图标库,目前已有超过1900个图标。你可以按照主题浏览,生成自己的图标,或者下载整个图标集。所有图标都可以在个人或…...