当前位置: 首页 > news >正文

SO-CNN-LSTM-MATT蛇群算法优化注意力机制深度学习多特征分类预测

SO-CNN-LSTM-MATT蛇群算法优化注意力机制深度学习多特征分类预测(多输入单输出)

目录

    • SO-CNN-LSTM-MATT蛇群算法优化注意力机制深度学习多特征分类预测(多输入单输出)
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现SO-CNN-LSTM-MATT蛇群算法优化卷积神经网络-长短期记忆神经网络融合多头注意力机制多特征分类预测,SO-CNN-LSTM-Multihead-Attention;
多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。
2.数据输入12个特征,输出4个类别,main.m是主程序,其余为函数文件,无需运行;
3.优化参数为:学习率,隐含层节点,正则化参数;
4.可视化展示分类准确率;
5.运行环境matlab2023b及以上。
注:程序和数据放在一个文件夹
在这里插入图片描述

在这里插入图片描述

程序设计

私信回复SO-CNN-LSTM-MATT蛇群算法优化注意力机制深度学习多特征分类预测

%%  参数设置
%%  数据反归一化
T_sim1 = vec2ind(t_sim1);
T_sim2 = vec2ind(t_sim2);% %%  数据排序
% [T_train, index_1] = sort(T_train);
% [T_test , index_2] = sort(T_test );
% 
% T_sim1 = T_sim1(index_1);
% T_sim2 = T_sim2(index_2);%%  性能评价
error1 = sum((T_sim1 == T_train))/M * 100 ;
error2 = sum((T_sim2 == T_test)) /N * 100 ;%%  绘图
figure()         
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
xlim([1, M])
gridfigure
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
xlim([1, N])
grid%%  混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关文章:

SO-CNN-LSTM-MATT蛇群算法优化注意力机制深度学习多特征分类预测

SO-CNN-LSTM-MATT蛇群算法优化注意力机制深度学习多特征分类预测(多输入单输出) 目录 SO-CNN-LSTM-MATT蛇群算法优化注意力机制深度学习多特征分类预测(多输入单输出)分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matl…...

大模型-Ollama使用相关的笔记

大模型-Ollama使用相关的笔记 解决Ollama外网访问问题(配置ollama跨域访问)Postman请求样例 解决Ollama外网访问问题(配置ollama跨域访问) 安装Ollama完毕后, /etc/systemd/system/ollama.service进行如下修改&#…...

OpenCV计算机视觉 02 图片修改 图像运算 边缘填充 阈值处理

目录 图片修改(打码、组合、缩放) 图像运算 边缘填充 ​阈值处理 上一篇文章: OpenCV计算机视觉 01 图像与视频的读取操作&颜色通道 图片修改(打码、组合、缩放) # 图片打码 import numpy as np a cv2.imre…...

langchain使用FewShotPromptTemplate出现KeyError的解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...

tryhackme-Cyber Security 101-Linux Shells(linux命令框)

目的:了解脚本和不同类型的 Linux shell。 任务1:Introduction to Linux Shells(Linux Shell 简介) 作为操作系统的常规用户,我们都广泛使用图形用户界面 (GUI) 来执行大多数操作。只需点击几…...

亚远景-ISO 21434标准涵盖了哪些方面?

ISO 21434标准《道路车辆—网络安全工程》全面涵盖了汽车网络安全领域,其目的是确保汽车电子系统在整个产品生命周期中的网络安全性能。具体来说,该标准包括以下几个方面: 1. 术语和定义 :提供汽车网络安全相关的术语、概念和定义…...

第3章 集合与关系

2024年12月24日一稿 2024年12月26日二稿 🐰3.1 集合的概念和表示法 🦘3.1.1 集合的表示 🦘3.1.2 基本概念 🐰3.2 集合的运算 🦘3.2.1 集合的基本运算 🦘3.2.2 有穷计数集 🦘3.2.3 广义交和广义…...

【vmware】|设置共享文件夹

目的: 虚拟机中设置共享文件夹,本地物理机中可以搜到该共享文件夹 1、虚拟机: 设置共享文件夹 右键属性-共享页码进行下列设置 点击网络和共享中心,检查下列选项 二、在本地物理机中启用网络发现: 此时,刷新网络…...

Log4j1.27配置日志输出级别不起效

起因:构建独立版本debezuim使用时,日志一直打印debug信息。 原因:包冲突问题,进行排包操作。 参考log4j日志级别配置完成后不生效 系统一直打印debug日志_log4j不起作用-CSDN博客 1、application.properties logging.configc…...

计算机图形学知识点汇总

一、计算机图形学定义与内容 1.图形 图形分为“图”和“形”两部分。 其中,“形”指形体或形状,存在于客观世界和虚拟世界,它的本质是“表示”;而图则是包含几何信息与属性信息的点、线等基本图元构成的画面,用于表达…...

详解下c语言中struct和union的对齐规则

接触过c语言的同学应该都知道字节对齐。有些时候我们很容易弄错字节对齐的方式,特别是涉及到struct(结构体)和union(联合体)时。今天我们通过详细例子来说明下struct和union的对齐规则,以便了解各种struct和…...

ubuntu安装sublime安装与免费使用

1. ubuntu安装sublime 参考官网: Linux Package Manager Repositories 2. 破解过程 打开如下网址,打开/opt/sublime_text/sublime_text https://hexed.it/ 3. 替换在hexed打开的文件中查找并替换: 4180激活方法 使用二进制编辑器 8079 0500 0f94 c2替换为 c641 05…...

攻防世界 cookie

开启场景 Cookie(HTTP cookie)是一种存储在用户计算机上的小型文本文件。它由网站通过用户的浏览器在用户访问网站时创建,并存储一些用于跟踪和识别用户的信息。Cookie 主要用于在网站和浏览器之间传递数据,以便网站可以根据用户的…...

深度学习笔记1:神经网络与模型训练过程

参考博客:PyTorch深度学习实战(1)——神经网络与模型训练过程详解_pytorch 实战-CSDN博客 人工神经网络 ANN:张量及数学运算的集合,排列方式近似于松散的人脑神经元排列 组成 1)输入层 2)隐…...

什么是 DevOps 自动化?

DevOps 自动化是一种现代软件开发方法,它使用工具和流程来自动化任务并简化工作流程。它将开发人员、IT 运营和安全团队聚集在一起,帮助他们有效协作并交付可靠的软件。借助 DevOps 自动化,组织能够处理重复性任务、优化流程并更快地将应用程…...

使用 Python 操作 MySQL 数据库的实用工具类:MySQLHandler

操作数据库是非常常见的需求,使用 Python 和 pymysql 库封装一个通用的 MySQL 数据库操作工具类,并通过示例演示如何使用这个工具类高效地管理数据库。 工具类的核心代码解析 MySQLHandler 类简介 MySQLHandler 是一个 Python 类,用于简化…...

DB-GPT V0.6.3 版本更新:支持 SiliconCloud 模型、新增知识处理工作流等

DB-GPT V0.6.3版本现已上线,快速预览新特性: 新特性 1. 支持 SiliconCloud 模型,让用户体验多模型的管理能力 如何使用: 修改环境变量文件.env,配置SiliconCloud模型 # 使用 SiliconCloud 的代理模型 LLM_MODELsiliconflow_p…...

亚式期权定价模型Turnbull-Wakeman进行delta对冲

Turnbull-Wakeman Model是一种用于定价和对冲亚式期权的数学模型。该模型由David Turnbull和Keith Wakeman在1990年提出,用于解决亚式期权的定价问题。 亚式期权是一种路径依赖类型的期权,其期权价格与标的资产价格某个期间内的平均值有关,假…...

Java的list中状态属性相同返回true的实现方案

文章目录 项目背景方案一、for循环实现实现思路 方案二、stream实现实现思路 项目背景 在项目中会遇到list中多个状态判断,状态值相等时,总体返回为true。 方案一、for循环实现 实现思路 遍历list,当出现不一致时,直接跳出循环…...

在 React 项目中安装和配置 Three.js

React 与 Three.js 的结合 :通过 React 管理组件化结构和应用逻辑,利用 Three.js 实现 3D 图形的渲染与交互。使用这种方法,我们可以在保持代码清晰和结构化的同时,实现令人惊叹的 3D 效果。 在本文中,我们将以一个简…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

pam_env.so模块配置解析

在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...

【机器视觉】单目测距——运动结构恢复

ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛&#xf…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...