【AI大模型】探索GPT模型的奥秘:引领自然语言处理的新纪元
目录
🍔 GPT介绍
🍔 GPT的架构
🍔 GPT训练过程
3.1 无监督的预训练语言模型
3.2 有监督的下游任务fine-tunning
🍔 小结

学习目标
- 了解什么是GPT.
- 掌握GPT的架构.
- 掌握GPT的预训练任务.
🍔 GPT介绍
- GPT是OpenAI公司提出的一种语言预训练模型.
- OpenAI在论文<< Improving Language Understanding by Generative Pre-Training >>中提出GPT模型.
- OpenAI后续又在论文<< Language Models are Unsupervised Multitask Learners >>中提出GPT2模型.
-
GPT和GPT2模型结构差别不大, 但是GPT2采用了更大的数据集进行训练.
-
OpenAI GPT模型是在Google BERT模型之前提出的, 与BERT最大的区别在于GPT采用了传统的语言模型方法进行预训练, 即使用单词的上文来预测单词, 而BERT是采用了双向上下文的信息共同来预测单词.
- 正是因为训练方法上的区别, 使得GPT更擅长处理自然语言生成任务(NLG), 而BERT更擅长处理自然语言理解任务(NLU).
🍔 GPT的架构
- 看三个语言模型的对比架构图, 中间的就是GPT:

从上图可以很清楚的看到GPT采用的是单向Transformer模型, 例如给定一个句子[u1, u2, ..., un], GPT在预测单词ui的时候只会利用[u1, u2, ..., u(i-1)]的信息, 而BERT会同时利用上下文的信息[u1, u2, ..., u(i-1), u(i+1), ..., un].
作为两大模型的直接对比, BERT采用了Transformer的Encoder模块, 而GPT采用了Transformer的Decoder模块. 并且GPT的Decoder Block和经典Transformer Decoder Block还有所不同, 如下图所示:
如上图所示, 经典的Transformer Decoder Block包含3个子层, 分别是Masked Multi-Head Attention层, encoder-decoder attention层, 以及Feed Forward层. 但是在GPT中取消了第二个encoder-decoder attention子层, 只保留Masked Multi-Head Attention层, 和Feed Forward层.
作为单向Transformer Decoder模型, GPT利用句子序列信息预测下一个单词的时候, 要使用Masked Multi-Head Attention对单词的下文进行遮掩, 来防止未来信息的提前泄露. 例如给定一个句子包含4个单词[A, B, C, D], GPT需要用[A]预测B, 用[A, B]预测C, 用[A, B, C]预测D. 很显然的就是当要预测B时, 需要将[B, C, D]遮掩起来.

具体的遮掩操作是在slef-attention进行softmax之前进行的, 一般的实现是将MASK的位置用一个无穷小的数值-inf来替换, 替换后执行softmax计算得到新的结果矩阵. 这样-inf的位置就变成了0. 如上图所示, 最后的矩阵可以很方便的做到当利用A预测B的时候, 只能看到A的信息; 当利用[A, B]预测C的时候, 只能看到A, B的信息.
注意: 对比于经典的Transformer架构, 解码器模块采用了6个Decoder Block; GPT的架构中采用了12个Decoder Block.

🍔 GPT训练过程
GPT的训练也是典型的两阶段过程:
- 第一阶段: 无监督的预训练语言模型.
- 第二阶段: 有监督的下游任务fine-tunning.
3.1 无监督的预训练语言模型
给定句子U = [u1, u2, ..., un], GPT训练语言模型时的目标是最大化下面的似然函数:

有上述公式可知, GPT是一个单向语言模型, 假设输入张量用h0表示, 则计算公式如下:

其中Wp是单词的位置编码, We是单词本身的word embedding. Wp的形状是[max_seq_len, embedding_dim], We的形状是[vocab_size, embedding_dim].
得到输入张量h0后, 要将h0传入GPT的Decoder Block中, 依次得到ht:

最后通过得到的ht来预测下一个单词:

3.2 有监督的下游任务fine-tunning
GPT经过预训练后, 会针对具体的下游任务对模型进行微调. 微调采用的是有监督学习, 训练样本包括单词序列[x1, x2, ..., xn]和label y. GPT微调的目标任务是根据单词序列[x1, x2, ..., xn]预测标签y.

其中Wy��表示预测输出的矩阵参数, 微调任务的目标是最大化下面的函数:

综合两个阶段的目标任务函数, 可知GPT的最终优化函数为:

🍔 小结
-
学习了什么是GPT.
- GPT是OpenAI公司提出的一种预训练语言模型.
- 本质上来说, GPT是一个单向语言模型.
-
学习了GPT的架构.
- GPT采用了Transformer架构中的解码器模块.
- GPT在使用解码器模块时做了一定的改造, 将传统的3层Decoder Block变成了2层Block, 删除了encoder-decoder attention子层, 只保留Masked Multi-Head Attention子层和Feed Forward子层.
- GPT的解码器总共是由12个改造后的Decoder Block组成的.
-
学习了GPT的预训练任务.
- 第一阶段: 无监督的预训练语言模型. 只利用单词前面的信息来预测当前单词.
- 第二阶段: 有监督的下游任务fine-tunning.

相关文章:
【AI大模型】探索GPT模型的奥秘:引领自然语言处理的新纪元
目录 🍔 GPT介绍 🍔 GPT的架构 🍔 GPT训练过程 3.1 无监督的预训练语言模型 3.2 有监督的下游任务fine-tunning 🍔 小结 学习目标 了解什么是GPT.掌握GPT的架构.掌握GPT的预训练任务. 🍔 GPT介绍 GPT是OpenAI公…...
5.Python爬虫相关
爬虫 爬虫原理 爬虫,又称网络爬虫,是一种自动获取网页内容的程序。它模拟人类浏览网页的行为,发送HTTP请求,获取网页源代码,再通过解析、提取等技术手段,获取所需数据。 HTTP请求与响应过程 爬虫首先向…...
Windows系统上配置eNSP环境的详细步骤
华为eNSP(Enterprise Network Simulation Platform)是一款针对华为数通网络设备的网络仿真平台,用于辅助工程师进行网络技术学习、方案验证和故障排查等工作。以下是在Windows系统上配置eNSP环境的详细步骤: 1. 准备工作 下载安…...
Database.NET——一款轻量级多数据库客户端工具
文章目录 Database.NET简介下载使用使用场景总结 Database.NET简介 Database.NET 是一个功能强大且易于使用的数据库管理工具,适用于多种数据库系统。它为开发者和数据库管理员提供了一个统一的界面,可以方便地管理和操作不同类型的数据库。 支持的数据…...
新浪微博C++面试题及参考答案
多态是什么?请详细解释其实现原理,例如通过虚函数表实现。 多态是面向对象编程中的一个重要概念,它允许不同的对象对同一消息或函数调用做出不同的响应,使得程序具有更好的可扩展性和灵活性。 在 C 中,多态主要通过虚函…...
计算机视觉目标检测-1
文章目录 摘要Abstract1.目标检测任务描述1.1 目标检测分类算法1.2 目标定位的简单实现思路1.2.1 回归位置 2.R-CNN2.1 目标检测-Overfeat模型2.1.1 滑动窗口 2.2 目标检测-RCNN模型2.2.1 非极大抑制(NMS) 2.3 目标检测评价指标 3.SPPNet3.1 spatial pyr…...
【物联网技术与应用】实验15:电位器传感器实验
实验15 电位器传感器实验 【实验介绍】 电位器可以帮助控制Arduino板上的LED闪烁的时间间隔。 【实验组件】 ● Arduino Uno主板* 1 ● 电位器模块* 1 ● USB电缆*1 ● 面包板* 1 ● 9V方型电池* 1 ● 跳线若干 【实验原理】 模拟电位器是模拟电子元件,模…...
java常用类(上)
笔上得来终觉浅,绝知此事要躬行 🔥 个人主页:星云爱编程 🔥 所属专栏:javase 🌷追光的人,终会万丈光芒 🎉欢迎大家点赞👍评论📝收藏⭐文章 目录 一、包装类 1.1包装类…...
包管理工具npm、yarn、pnpm、cnpm详解
1. 包管理工具 1.1 npm # 安装 $ node 自带 npm# 基本用法 npm install package # 安装包 npm install # 安装所有依赖 npm install -g package # 全局安装 npm uninstall package # 卸载包 npm update package # 更新包 npm run script #…...
CI/CD是什么?
CI/CD 定义 CI/CD 代表持续集成和持续部署(或持续交付)。它是一套实践和工具,旨在通过自动化构建、测试和部署来改进软件开发流程,使您能够更快、更可靠地交付代码更改。 持续集成 (CI):在共享存储库中自动构建、测试…...
[Java]合理封装第三方工具包(附视频)
-1.视频链接 视频版: 视频版会对本文章内容进行详细解释 [Java]合理封装第三方工具包_哔哩哔哩_bilibili 0.核心思想 对第三方工具方法进行封装,使其本地化,降低记忆和使用成本 1.背景 在我们的项目中,通常会引用一些第三方工具包,或者是使用jdk自带的一些工具类 例如: c…...
常规配置、整合IDEA
目录 Redis常规配置 tcp-keepalive security Jedis RedisTemplate 连接池技术 Lua脚本 Jedis集群 Redis应用问题&解决方案 缓存穿透 缓存击穿 缓存雪崩 分布式锁 Redis实现分布式锁 Redis新功能 ACL Redis常规配置 tcp-keepalive security redis.conf中…...
用Python写炸金花游戏
文章目录 **代码分解与讲解**1. **扑克牌的生成与洗牌**2. **给玩家发牌**3. **打印玩家的手牌**4. **定义牌的优先级**5. **判断牌型**6. **确定牌型优先级**7. **比较两手牌的大小**8. **计算每个玩家的牌型并找出赢家**9. **打印结果** 完整代码 以下游戏规则: 那…...
计算机的错误计算(一百九十二)
摘要 用两个大模型计算 csc(0.999), 其中,0.999是以弧度为单位的角度,结果保留5位有效数字。两个大模型均给出了 Python代码与答案。但是,答案是错误的。 例1. 计算 csc(0.999), 其中,0.999是以弧度为单位的角度,结…...
37 Opencv SIFT 特征检测
文章目录 Ptr<SIFT> SIFT::create示例 Ptr SIFT::create Ptr<SIFT> SIFT::create(int nfeatures 0,int nOctaveLayers 3,double contrastThreshold 0.04,double edgeThreshold 10,double sigma 1.6 );参数说明:nfeatures:类型&#x…...
Nginx界的天花板-Oracle 中间件OHS 11g服务器环境搭建
环境信息 服务器基本信息 如下表,本次安装总共使用2台服务器,具体信息如下: 服务器IP DNS F5配置 OHS1 172.xx.xx.xx ohs01.xxxxxx.com ohs.xxxxxx.com OHS2 172.xx.xx.xx ohs02.xxxxxx.com 服务器用户角色信息均为:…...
域名解析协议
一、DNS简述 DNS协议是一种应用层协议,用于将域名转换为对应的IP地址,使得客户端可以通过域名来访问Internet上的各种资源 DNS的基础设施是由分层的DNS服务器实现的分布式数据库,它运行在UDP之上,通常使用端口号53 DN…...
微信小程序给外面的view设置display:flex;后为什么无法给里面的view设置宽度
如果父盒子view设置了display:flex,子view设置宽度值无效,宽度值都是随着内容多少而改变: 问题视图: 原因: flex布局元素的子元素,自动获得了flex-shrink的属性 解决方法: 给子view增加:fl…...
Maven怎么会出现一个dependency-reduced-pom.xml的文件
问题 今天打包时突然发现,多出了一个名为dependency-reduced-pom.xml的文件 解决方法 由于使用了maven-shade-plugin插件导致的,在 <plugin> 标签下添加 <configuration><createDependencyReducedPom>false</createDependencyR…...
突发!!!GitLab停止为中国大陆、港澳地区提供服务,60天内需迁移账号否则将被删除
GitLab停止为中国大陆、香港和澳门地区提供服务,要求用户在60天内迁移账号,否则将被删除。这一事件即将引起广泛的关注和讨论。以下是对该事件的扩展信息: 1. 背景介绍:GitLab是一家全球知名的软件开发平台,提供代码托…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...
项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...
安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...

