当前位置: 首页 > news >正文

大模型应用技术系列(三): 深入理解大模型应用中的Cache:GPTCache

前言

        无论在什么技术栈中,缓存都是比较重要的一部分。在大模型技术栈中,缓存存在于技术栈中的不同层次。本文将主要聚焦于技术栈中应用层和底层基座之间中间件层的缓存(个人定位),以开源项目GPTCache(LLM的语义缓存)为例,深入讲解这部分缓存的结构和关键实现。

        完整技术栈详情参考之前文章《大模型应用技术系列(一):大模型应用整体技术栈浅析》

使用场景

        当用户流量比较大的C端应用试图接入大模型能力时,如果每次请求都访问LLM,通过LLM生成结果再返回给服务,那么对于LLM服务而言压力会比较大,整体服务的吞吐量和延迟通常都会有比较大的影响。如果这些请求之间有一些相似性(比如A用户提问:今天天气怎么样?B用户也提问:今儿天气如何?),那么这个时候就可以考虑在应用服务和LLM基座之间引入语义缓存来尝试提升服务性能。

常见用法

        先来介绍一些语义缓存GPTCache的一些常见用法,以下示例取自官网。

精确匹配

        精确匹配意味着对于见过的重复问题可以不需要再去请求背后的LLM,而是命中cache之后直接从cache中去寻找。这种做法下,代码不需要有比较大的变动,只需要添加以下4行即可:

import timedef response_text(openai_resp):return openai_resp['choices'][0]['message']['content']print("Cache loading.....")#------------------------------
from gptcache import cache
from gptcache.adapter import openai
cache.init()
cache.set_openai_key()
#------------------------------start_time = time.time()
response = openai.ChatCompletion.create(model='gpt-3.5-turbo',messages=[{'role': 'user','content': question}],
)
print(f'Question: {question}')
print("Time consuming: {:.2f}s".format(time.time() - start_time))
print(f'Answer: {response_text(response)}\n')

语义相似匹配

        精确匹配只能匹配完全相同的问题,这在大多数场景下不是特别有用(用户可能以不同的方式问出相似的问题)。在这种情况下,基于语义相似匹配的cache可能更有用。通过缓存相似语义问题的回答来解决当前的问题。这种方式在初始化cache的时候,需要加上一些其他的模块,这些模块后续会进行介绍。

import time
def response_text(openai_resp):return openai_resp['choices'][0]['message']['content']#--------------------------------------------------
from gptcache import cache
from gptcache.adapter import 

相关文章:

大模型应用技术系列(三): 深入理解大模型应用中的Cache:GPTCache

前言 无论在什么技术栈中,缓存都是比较重要的一部分。在大模型技术栈中,缓存存在于技术栈中的不同层次。本文将主要聚焦于技术栈中应用层和底层基座之间中间件层的缓存(个人定位),以开源项目GPTCache(LLM的语义缓存)为例,深入讲解这部分缓存的结构和关键实现。 完整技术…...

『大模型笔记』评估大型语言模型的指标:ELO评分,BLEU,困惑度和交叉熵介绍以及举例解释

评估大型语言模型的指标:ELO评分,BLEU,困惑度和交叉熵介绍以及举例解释 文章目录 一. ELO Rating大模型的elo得分如何理解1. Elo评分的基本原理2. 示例说明3. 大模型中的Elo得分总结3个模型之间如何比较计算,给出示例进行解释1. 基本原理扩展到三方2. 示例计算第一场: A A…...

深度解析:Maven 和 Gradle 的使用比较及常见仓库推荐

Maven 和 Gradle 是 Java 项目中最常用的构建工具。它们各有优势,适用于不同的场景。本文将对两者进行详细的对比,并推荐一些常用的 Maven 和 Gradle 仓库,帮助开发者高效管理依赖。 一、Maven 和 Gradle 的使用比较 1.1 基本介绍 Maven 基…...

SQLite本地数据库的简介和适用场景——集成SpringBoot的图文说明

前言:现在项目普遍使用的数据库都是MySQL,而有些项目实际上使用SQLite既足矣。在一些特定的项目中,要比MySQL更适用。 这一篇文章简单的介绍一下SQLite,对比MySQL的优缺点、以及适用的项目类型和集成SpringBoot。 1. SQLite 简介 …...

管理面板Ajenti的在Windows10下Ubuntu24.04/Ubuntu22.04里的安装

Ajenti是一款基于Web的开源系统管理控制面板,可用于通过Web浏览器,管理远程系统管理性任务,这一点与 Webmin模块 非常相似。 Ajenti是一款功能非常强大的轻型工具,它提供了快速的、反应灵敏的Web界面,可用于管理小型服…...

在Python如何用Type创建类

文章目录 一,如何创建类1:创建一个简单类2:添加属性和方法3:动态继承父类4:结合元类的使用总结 二.在什么情境下适合使用Type创建类1. **运行时动态生成类**2. **避免重复代码**3. **依赖元类或高级元编程**4. **动态扩…...

Android学习19 -- NDK4--共享内存(TODO)

在安卓的NDK(Native Development Kit)中,C共享内存通常用于不同进程间的通信,或者在同一进程中多线程之间共享数据。这种方法相较于其他形式的IPC(进程间通信)来说,具有更高的性能和低延迟。共享…...

《Cocos Creator游戏实战》非固定摇杆实现原理

为什么要使用非固定摇杆 许多同学在开发摇杆功能时,会将摇杆固定在屏幕左下某一位置,不会让其随着大拇指触摸点改变,而且玩家只有按在了摇杆上才能移动人物(触摸监听事件在摇杆精灵上)。然而,不同玩家的大拇指长度不同…...

RabbitMQ工作模式(详解 工作模式:简单队列、工作队列、公平分发以及消息应答和消息持久化)

文章目录 十.RabbitMQ10.1 简单队列实现10.2 Work 模式(工作队列)10.3 公平分发10.4 RabbitMQ 消息应答与消息持久化消息应答概念配置 消息持久化概念配置 十.RabbitMQ 10.1 简单队列实现 简单队列通常指的是一个基本的消息队列,它可以用于…...

【VScode】第三方GPT编程工具-CodeMoss安装教程

一、CodeMoss是什么? CodeMoss是一款集编程、学习和办公于一体的高效工具。它兼容多种主流平台,包括VSCode、IDER、Chrome插件、Web和APP等,支持插件安装,尤其在VSCode和IDER上的表现尤为出色。无论你是编程新手还是资深开发者&a…...

在JavaScript中,let 和 const有什么不同

在JavaScript中,let 和 const 是用于声明变量的关键字,但它们有一些重要的区别 1.重新赋值: let 声明的变量可以重新赋值。const 声明的变量必须在声明时初始化,并且之后不能重新赋值 let a 10; a 20; // 有效,a 的…...

Mysq学习-Mysql查询(4)

5.子查询 子查询指一个查询语句嵌套在另一个查询语句内部的查询,这个特性从MySQL4.1开始引入.在SELECT子句中先计算子查询,子查询结果作为外层另一个查询的过滤条件,查询可以基于一个表或者多个表. 子查询中常用的操作符有ANY(SOME),ALL,IN,EXISTS.子查询可以添加到SELECT,UPD…...

安装torch-geometric库

目录 1.查看 torch 和 CUDA 版本 2.依次下载和 torch 和 CUDA 对应版本的四个依赖库pyg-lib、torch-scatter、torch-sparse、torch-cluster以及torch-spline-conv 3.下载并安装torch-geometric库 1.查看 torch 和 CUDA 版本 查看CUDA版本 nvcc -V 查看pytorch版本 pip s…...

Java数组深入解析:定义、操作、常见问题与高频练习

一、数组的定义 1. 什么是数组 数组是一个容器,用来存储多个相同类型的数据。它属于引用数据类型,可以存储基本数据类型(如int、char)或者引用数据类型(如String、对象)。 2. 数组的定义方式 a. 动态初…...

Docker-构建自己的Web-Linux系统-镜像webtop:ubuntu-kde

介绍 安装自己的linux-server,可以作为学习使用,web方式访问,基于ubuntu构建开源项目 https://github.com/linuxserver/docker-webtop安装 docker run -d -p 1336:3000 -e PASSWORD123456 --name webtop lscr.io/linuxserver/webtop:ubuntu-kde登录 …...

【C语言练习(17)—输出杨辉三角形】

C语言练习(17) 文章目录 C语言练习(17)前言题目题目解析整体代码 前言 杨辉三角形的输出可以分三步,第一步构建一个三角形、第二步根据规律将三角形内容填写、第三步将三角形以等腰的形式输出 题目 请输出一个十行的…...

SpringMVC学习(二)——RESTful API、拦截器、异常处理、数据类型转换

一、RESTful (一)RESTful概述 RESTful是一种软件架构风格,用于设计网络应用程序。REST是“Representational State Transfer”的缩写,中文意思是“表现层状态转移”。它基于客户端-服务器模型和无状态操作,以及使用HTTP请求来处理数据。RES…...

React 第二十节 useRef 用途使用技巧注意事项详解

简述 useRef 用于操作不需要在视图上渲染的属性数据,用于访问真实的DOM节点,或者React组件的实例对象,允许直接操作DOM元素或者是组件; 写法 const inpRef useRef(params)参数: useRef(params),接收的 …...

VIVO Java开发面试题及参考答案

TCP 能不能两次握手? TCP 不能两次握手。 在 TCP 连接建立过程中,三次握手是必不可少的。第一次握手是客户端向服务器发送一个带有 SYN(同步序列号)标志的 TCP 报文段,这个报文段包含了客户端初始的序列号。这一步的主要目的是告诉服务器,客户端想要建立连接,并且让服务…...

C# Winfrom chart图 实例练习

代码太多了我就不展示了,贴一些比较有代表性的 成品效果展示: Excel转Chart示例 简单说一下我的思路 \ 先把Excel数据展示在dataGridView控件上 XLIST 为 X轴的数据 XLIST 为 Y轴的数据 ZLIST 为 展示的数据进行数据处理点击展示即可 // 将Excel数…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...

Python网页自动化Selenium中文文档

1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API,让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API,你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...

解析“道作为序位生成器”的核心原理

解析“道作为序位生成器”的核心原理 以下完整展开道函数的零点调控机制,重点解析"道作为序位生成器"的核心原理与实现框架: 一、道函数的零点调控机制 1. 道作为序位生成器 道在认知坐标系$(x_{\text{物}}, y_{\text{意}}, z_{\text{文}}…...

在Zenodo下载文件 用到googlecolab googledrive

方法:Figshare/Zenodo上的数据/文件下载不下来?尝试利用Google Colab :https://zhuanlan.zhihu.com/p/1898503078782674027 参考: 通过Colab&谷歌云下载Figshare数据,超级实用!!&#xff0…...