C++-----图
一、图的结构
在 C++ 中,图可以用多种结构表示,常见的有邻接矩阵和邻接表。
邻接矩阵
使用二维数组 adjMatrix 来表示图中顶点之间的连接关系。对于无向图,如果 adjMatrix[i][j] 不为零,则表示顶点 i 和顶点 j 之间存在边;对于有权图,adjMatrix[i][j] 的值可以表示边的权重。对于无权图,可以用 1 表示有边,0 表示无边。
#include <iostream>
#include <vector>class GraphAdjMatrix {
private:int numVertices;std::vector<std::vector<int>> adjMatrix;
public:// 构造函数,初始化邻接矩阵GraphAdjMatrix(int vertices) : numVertices(vertices), adjMatrix(vertices, std::vector<int>(vertices, 0)) {}// 添加边void addEdge(int src, int dest, int weight = 1) {if (src >= 0 && src < numVertices && dest >= 0 && dest < numVertices) {adjMatrix[src][dest] = weight;// 对于无向图,添加反向边adjMatrix[dest][src] = weight; }}// 打印邻接矩阵void print() {for (int i = 0; i < numVertices; ++i) {for (int j = 0; j < numVertices; ++j) {std::cout << adjMatrix[i][j] << " ";}std::cout << std::endl;}}
};
邻接表
使用一个数组或向量,其中每个元素存储一个链表或向量,存储与该顶点相连的顶点。对于有权图,可以存储一个包含顶点和权重的结构体或 pair。
#include <iostream>
#include <vector>class GraphAdjList {
private:int numVertices;std::vector<std::vector<int>> adjList;
public:// 构造函数,初始化邻接表GraphAdjList(int vertices) : numVertices(vertices), adjList(vertices) {}// 添加边void addEdge(int src, int dest) {adjList[src].push_back(dest);// 对于无向图,添加反向边adjList[dest].push_back(src); }// 打印邻接表void print() {for (int i = 0; i < numVertices; ++i) {std::cout << i << " -> ";for (int neighbor : adjList[i]) {std::cout << neighbor << " ";}std::cout << std::endl;}}
};
二、图的遍历
图的遍历有深度优先搜索(DFS)和广度优先搜索(BFS)两种常见方法。
深度优先搜索 (DFS)
DFS 是一种递归算法,从起始顶点开始,尽可能深地访问图的分支。
#include <iostream>
#include <vector>class GraphDFS {
private:int numVertices;std::vector<std::vector<int>> adjList;std::vector<bool> visited;// 辅助函数,进行深度优先搜索void dfsUtil(int vertex) {visited[vertex] = true;std::cout << vertex << " ";for (int neighbor : adjList[vertex]) {if (!visited[neighbor]) {dfsUtil(neighbor);}}}
public:GraphDFS(int vertices) : numVertices(vertices), adjList(vertices), visited(vertices, false) {}// 添加边void addEdge(int src, int dest) {adjList[src].push_back(dest);// 对于无向图,添加反向边adjList[dest].push_back(src); }// 执行深度优先搜索void dfs(int startVertex) {dfsUtil(startVertex);}
};
广度优先搜索 (BFS)
BFS 是一种迭代算法,从起始顶点开始,逐层访问图的顶点。
#include <iostream>
#include <vector>
#include <queue>class GraphBFS {
private:int numVertices;std::vector<std::vector<int>> adjList;std::vector<bool> visited;public:GraphBFS(int vertices) : numVertices(vertices), adjList(vertices), visited(vertices, false) {}// 添加边void addEdge(int src, int dest) {adjList[src].push_back(dest);// 对于无向图,添加反向边adjList[dest].push_back(src); }// 执行广度优先搜索void bfs(int startVertex) {std::queue<int> q;visited[startVertex] = true;q.push(startVertex);while (!q.empty()) {int vertex = q.front();q.pop();std::cout << vertex << " ";for (int neighbor : adjList[vertex]) {if (!visited[neighbor]) {visited[neighbor] = true;q.push(neighbor);}}}}
};
三、最短路径算法
有多种最短路径算法,以下是 Dijkstra 算法的实现。
Dijkstra 算法
用于求解单源最短路径问题,适用于边权为非负的图。
#include <iostream>
#include <vector>
#include <queue>
#include <climits>class GraphDijkstra {
private:int numVertices;std::vector<std::vector<std::pair<int, int>>> adjList; // pair: (neighbor, weight)std::vector<int> dijkstra(int src) {std::vector<int> dist(numVertices, INT_MAX);dist[src] = 0;std::priority_queue<std::pair<int, int>, std::vector<std::pair<int, int>>, std::greater<std::pair<int, int>>> pq;pq.push({0, src});while (!pq.empty()) {int u = pq.top().second;pq.pop();for (auto neighbor : adjList[u]) {int v = neighbor.first;int weight = neighbor.second;if (dist[u] + weight < dist[v]) {dist[v] = dist[u] + weight;pq.push({dist[v], v});}}}return dist;}
public:GraphDijkstra(int vertices) : numVertices(vertices), adjList(vertices) {}// 添加边void addEdge(int src, int dest, int weight) {adjList[src].push_back({dest, weight});}// 打印从源点出发的最短路径void printShortestPaths(int src) {std::vector<int> dist = dijkstra(src);for (int i = 0; i < numVertices; ++i) {std::cout << "Distance from " << src << " to " << i << " is " << dist[i] << std::endl;}}
};
四、搜索网页算法(PageRank 算法)
PageRank 算法用于评估网页的重要性。
#include <iostream>
#include <vector>
#include <cmath>class WebGraphPageRank {
private:int numPages;std::vector<std::vector<bool>> adjMatrix;std::vector<double> pageRank;double dampingFactor = 0.85;double tolerance = 0.0001;bool isConverged(const std::vector<double>& oldPR, const std::vector<double>& newPR) {for (int i = 0; i < numPages; ++i) {if (std::abs(oldPR[i] - newPR[i]) > tolerance) {return false;}}return true;}void updatePageRank() {std::vector<double> newPR(numPages, 0);for (int i = 0; i < numPages; ++i) {for (int j = 0; j < numPages; ++j) {if (adjMatrix[j][i]) {int outDegree = 0;for (int k = 0; k < numPages; ++k) {if (adjMatrix[j][k]) outDegree++;}newPR[i] += pageRank[j] / outDegree;}}newPR[i] = (1 - dampingFactor) / numPages + dampingFactor * newPR[i];}pageRank = newPR;}public:WebGraphPageRank(int pages) : numPages(pages), adjMatrix(pages, std::vector<bool>(pages, false)), pageRank(pages, 1.0 / pages) {}// 添加网页之间的链接void addLink(int src, int dest) {if (src >= 0 && src < numPages && dest >= 0 && dest < numPages) {adjMatrix[src][dest] = true;}}// 计算 PageRankvoid computePageRank() {std::vector<double> prevPR = pageRank;do {updatePageRank();} while (!isConverged(prevPR, pageRank));}// 打印 PageRank 值void printPageRank() {for (int i = 0; i < numPages; ++i) {std::cout << "Page " << i << " : " << pageRank[i] << std::endl;}}
};
解释
-
图的结构表示:
- 邻接矩阵:使用二维数组,易于理解和实现,对于稠密图空间效率较高,但对于稀疏图会浪费空间。
- 邻接表:使用数组加链表(或向量),对于稀疏图空间效率更高,但查找边时可能需要遍历链表。
-
图的遍历:
- DFS:使用递归方式,先访问当前顶点,然后递归访问其邻居,直到无法继续深入,再回溯。
- BFS:使用队列,先访问当前顶点,将邻居入队,按入队顺序依次访问,实现层次遍历。
-
最短路径算法(Dijkstra):
- 利用优先队列(最小堆)存储距离源点的距离,不断选取距离最小的顶点,更新其邻居的距离。
-
搜索网页算法(PageRank):
- 基于网页之间的链接关系,迭代更新每个网页的重要性得分,直到收敛。根据链接的入度和出度,结合阻尼因子计算得分。
使用示例
int main() {// 邻接矩阵示例GraphAdjMatrix g1(5);g1.addEdge(0, 1, 10);g1.addEdge(0, 2, 20);g1.addEdge(1, 2, 30);g1.addEdge(2, 3, 40);g1.print();// 邻接表示例GraphAdjList g2(5);g2.addEdge(0, 1);g2.addEdge(0, 2);g2.addEdge(1, 2);g2.addEdge(2, 3);g2.print();// DFS 示例GraphDFS g3(5);g3.addEdge(0, 1);g3.addEdge(0, 2);g3.addEdge(1, 2);g3.addEdge(2, 3);std::cout << "DFS: ";g3.dfs(0);std::cout << std::endl;// BFS 示例GraphBFS g4(5);g4.addEdge(0, 1);g4.addEdge(0, 2);g4.addEdge(1, 2);g4.addEdge(2, 3);std::cout << "BFS: ";g4.bfs(0);std::cout << std::endl;// Dijkstra 算法示例GraphDijkstra g5(5);g5.addEdge(0, 1, 10);g5.addEdge(0, 2, 20);g5.addEdge(1, 2, 30);g5.addEdge(2, 3, 40);g5.printShortestPaths(0);// PageRank 算法示例WebGraphPageRank wg(5);wg.addLink(0, 1);wg.addLink(0, 2);wg.addLink(1, 2);wg.addLink(2, 0);wg.addLink(2, 3);wg.addLink(3, 4);wg.addLink(4, 0);wg.computePageRank();wg.printPageRank();return 0;
}
总结
- 图是一种强大的数据结构,可用于解决许多现实世界的问题,如网络路由、社交网络分析、网页搜索等。
- 选择合适的图表示方法(邻接矩阵或邻接表)取决于图的稀疏程度。
- 不同的遍历算法(DFS 和 BFS)适用于不同的场景,DFS 适合寻找路径和解决可达性问题,BFS 适合寻找最短路径和层次遍历。
- 最短路径算法(如 Dijkstra)可以找到图中源点到其他点的最短路径,适用于边权非负的情况。
- 搜索网页算法(如 PageRank)可评估网页的重要性,通过不断迭代更新得分,考虑网页之间的链接结构。

相关文章:
C++-----图
一、图的结构 在 C 中,图可以用多种结构表示,常见的有邻接矩阵和邻接表。 邻接矩阵 使用二维数组 adjMatrix 来表示图中顶点之间的连接关系。对于无向图,如果 adjMatrix[i][j] 不为零,则表示顶点 i 和顶点 j 之间存在边&#x…...
mysql 数据库迁移到达梦数据库
1.windows安装达梦数据库,去官网下载 dm8 进行安装,安装后,可以使用管理工具管理数据 使用迁移工具对数据进行迁移; 2.使用php 或者 thinkphp连接达梦数据库 2.1、先PHP开启DM扩展 从达梦数据库安装目录下drivers/php_pdo 复制对…...
【记录】使用R2 CDN替换本地项目图片以加速图片加载
将图片存储到 Cloudflare 的存储桶中,并通过其提供的公共 URL 来替换代码中的本地路径,可以减小项目中打包的图片文件体积 实现方法的详细步骤: 1. 上传图片到 Cloudflare 的存储桶 (1)登录 Cloudflare Dashboard&am…...
12.13[java exp4][debug]nginx 500,究极未解之谜,出自重启,解决自重启,迷???
pro1 pro2?????????未解之谜,究极未解之谜???? 就是 auth_request http://auth_server/auth/check;接受不到,auth_server无法受到请求,就完全没收到?但是/auth/login等直接…...
Disruptor 高性能环形消息框架
官方文档:Disruptor 1. 简介 Disruptor是一个高性能的互进程(Inter-process)和多线程(Multi-threaded)消息处理库,由LMAX交易所开发,用于在Java虚拟机(JVM)上实现高性能…...
Python列表(二)
方式三: 创建对应的枚举对象 概念:通过枚举函数,生成一个新的对象 作用:函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列 同时列出数据下标和数据 #生成枚举对象 values [&…...
计算机网络:应用层 —— 网络应用模式
文章目录 客户—服务器方式和对等方式客户/服务器方式 (C/S方式)工作流程特点 对等方式 (P2P方式)工作流程P2P 应用特点 客户—服务器方式和对等方式 网络应用程序运行在处于网络边缘的不同的端系统上,通过彼此间的通信来共同完成某项任务。 开发一种新的网络应用…...
@Repository注解和@mapper的区别
1. Repository 注解 通俗解释: 你可以把 Repository 注解想象成是一个专门负责管理数据库操作的 “仓库管理员”。这个管理员主要负责和数据库打交道,就像管理一个大仓库一样,他会进行各种操作,比如把货物(数据&#x…...
解锁成长密码:探寻刻意练习之道
刻意练习,真有那么神? 在生活中,你是否有过这样的困惑:每天苦练英语口语,可一到交流时还是支支吾吾;埋头苦学吉他,却总是卡在几个和弦转换上;工作多年,业务能力却似乎陷入…...
cuda-cuDnn
cuda sudo /bin/sh cuda_11.7.0_515.43.04_linux.run cudnn cuDNN Archive | NVIDIA Developer Linux 系统 CUDA 多版本共存以及切换 – 颢天 安装cuda # 如果已经安装过驱动,驱动不需要再安装,取消勾选 安装cuDNN,cuda-cuDNN对应关系见…...
如何使用Python和PIL库生成带竖排文字的封面图像
在今天的博客中,我们将学习如何使用Python和PIL(Pillow)库生成一个简单而有创意的封面图像。我们将创建一个背景图像,并在其上绘制带有竖排文字的标题和副标题,最后再添加一些装饰性元素如星星和萤火虫。这个教程适合初…...
低代码开发 实战转型案例一览
数字浪潮澎湃,企业应用开发需求呈井喷之势。传统全栈开发虽底蕴深厚,然其漫长周期与高昂成本,难以追赶市场快速交付的急切步伐。无代码与低代码平台顺势崛起,宛如暗夜明灯,吸引非技术人员纷至沓来,投身应用…...
SQL Server中FIRST_VALUE和 LAST_VALUE窗口函数允许在一个指定的窗口内返回第一个或最后一个值
在 SQL Server 中,FIRST_VALUE 和 LAST_VALUE 是用于窗口函数(Window Functions)的两个非常有用的函数。它们允许你在一个指定的窗口内返回第一个或最后一个值。这两个函数通常与 OVER 子句一起使用,以定义窗口的范围和排序规则。…...
机器学习-高斯混合模型
文章目录 高斯混合模型对无标签的数据集:使用高斯混合模型进行聚类对有标签的数据集:使用高斯混合模型进行分类总结 高斯混合模型 对无标签的数据集:使用高斯混合模型进行聚类 对有标签的数据集:使用高斯混合模型进行分类 总结...
微信V3支付报错 平台证书及平台证书序列号
1.平台证书及平台证书序列号设置错误报错: 错误1: Verify the response’s data with: timestamp1735184656, noncea5806b8cabc923299f8db1a174f3a4d0, signatureFZ5FgD/jtt4J99GKssKWKA/0buBSOAbWcu6H52l2UqqaJKvrsNxvodB569ZFz5G3fbassOQcSh5BFq6hvE…...
41.欠采样技术下变频不能用与跨两个nyquist的情况下
当接收到的信号位于同一nyquist区间时,信号被成功的折叠到了第一Nyquist区间中。 当接收信号位于两个或多个采样区间时,最后多个区间的信号都会被折叠到第一Nyquist区间中造成信号的重叠。...
20241227通过配置nomodeset参数解决更新grub之后,ubuntu20.04.5无法启动的问题
20241227通过配置nomodeset参数解决更新grub之后,ubuntu20.04.5无法启动的问题 2024/12/27 17:34 0.397475]pci0000:00:07.0:DPC:RPPI0 l0gsize 0 is invalid dev/nvmeon1p9:clean,251849/4276224 files,3266309/17089792 blocks 缘起:公司电脑要安装加密…...
从 GitLab.com 到 JihuLab.com 的迁移指南
本文分享从 GitLab.com 到 JihuLab.com 的迁移指南。 近期,GitLab Inc. 针对其 SaaS 产品做了限制,如果被判定为国内用户,则会建议使用其在国内的发布版本极狐GitLab。从 GitLab SaaS 产品(GitLab.com)迁移到极狐GitL…...
深度学习中的并行策略概述:2 Data Parallelism
深度学习中的并行策略概述:2 Data Parallelism 数据并行(Data Parallelism)的核心在于将模型的数据处理过程并行化。具体来说,面对大规模数据批次时,将其拆分为较小的子批次,并在多个计算设备上同时进行处…...
Python大数据可视化:基于Python对B站热门视频的数据分析与研究_flask+hive+spider
开发语言:Python框架:flaskPython版本:python3.7.7数据库:mysql 5.7数据库工具:Navicat11开发软件:PyCharm 系统展示 管理员登录 管理员功能界面 排行榜界面 系统管理界面 看板展示 摘要 本项目以对B站热…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...
永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...
在树莓派上添加音频输入设备的几种方法
在树莓派上添加音频输入设备可以通过以下步骤完成,具体方法取决于设备类型(如USB麦克风、3.5mm接口麦克风或HDMI音频输入)。以下是详细指南: 1. 连接音频输入设备 USB麦克风/声卡:直接插入树莓派的USB接口。3.5mm麦克…...
