当前位置: 首页 > news >正文

线性代数期末总复习的点点滴滴(1)

一、可逆矩阵、行列式、秩的关系 

1.行列式与可逆矩阵的关系

所以,不难看出矩阵可逆的充分必要条件是该矩阵的行列式不为0。

2.接着来看,满秩和矩阵行列式的关系

不难看出满秩和行列式不为0是等价的。

 3.再来看,满秩和矩阵可逆的关系

说明了满秩和可逆是等价的。

4.综上所述可以发现三者之间必然有着联系

 

是的,关系就是:
                对于一个n x n的方阵,满秩、可逆和行列式不为0是等价的 

 那么就存档到这里,明天再努力努力@0()0@

我是荒古前,期待你的关注!!!

相关文章:

线性代数期末总复习的点点滴滴(1)

一、可逆矩阵、行列式、秩的关系 1.行列式与可逆矩阵的关系 所以,不难看出矩阵可逆的充分必要条件是该矩阵的行列式不为0。 2.接着来看,满秩和矩阵行列式的关系 不难看出满秩和行列式不为0是等价的。 3.再来看,满秩和矩阵可逆的关系 说明了…...

python+reportlab创建PDF文件

目录 字体导入 画布写入 创建画布对象 写入文本内容 写入图片内容 新增页 画线 表格 保存 模板写入 创建模板对象 段落及样式 表格及样式 画框 图片 页眉页脚 添加图形 构建pdf文件 reportlab库支持创建包含文本、图像、图形和表格的复杂PDF文档。 安装&…...

2024最新qrcode.min.js生成二维码Demo

找了一堆代码一堆GPT&#xff0c;终于给写对了&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><…...

【Microi吾码】开源力量赋能低代码创新,重塑软件开发生态格局

我的个人主页 文章专栏&#xff1a;Microi吾码 一、引言 在当今数字化浪潮汹涌澎湃的时代&#xff0c;软件开发的需求呈现出爆发式增长。企业为了在激烈的市场竞争中脱颖而出&#xff0c;不断寻求创新的解决方案以加速数字化转型。传统的软件开发方式往往面临着开发周期长、技…...

Github - 如何提交一个带有“verified”标识的commit

Github - 如何提交一个带有“verified”标识的commit 前言(Why) 今天在Github上浏览某项目的commit记录的时候发现&#xff0c;有的commit记录带有verified绿色标识&#xff0c;有的带有橘色的Unverified标识&#xff0c;还有的什么都不显示。 既然我是根正苗红的作者(bushi)…...

HCIA笔记9--NAT、ACL与链路聚合

1. ACL ACL: 访问控制列表, Access Control List。 通过定义规则来允许或拒绝流量的通过。 1.1 ACL分类 1.2 配置实例 如图所示&#xff0c;对R2的访问只允许192.168.1.0/24网段。 我们可以配置基本acl来限制 acl 2000 acl number 2000 rule 5 permit source 192.168.1.0 0…...

SCSA:探索空间与通道注意力之间的协同效应

文章目录 摘要1 引言2 相关工作2.1 多语义空间信息2.2 注意力分解 3 方法3.1 共享多语义空间注意力&#xff1a;空间与通道分解3.2 渐进式通道自注意力3.3 协同效应3.4 注意力机制的整合 4 实验4.1 实验设置4.2 图像分类4.3 目标检测4.4 分割4.5 消融研究 5 可视化与分析5.1 注…...

深度学习助力股市预测:LSTM、RNN和CNN模型实战解析

作者&#xff1a;老余捞鱼 原创不易&#xff0c;转载请标明出处及原作者。 写在前面的话&#xff1a;众所周知&#xff0c;传统的股票预测模型有着各种各样的局限性。但在我的最新研究中&#xff0c;探索了一些方法来高效预测股市走势&#xff0c;即CNN、RNN和LSTM这些深度学习…...

组件库TDesign的表格<t-table>的使用,行列合并以及嵌入插槽实现图标展示,附踩坑

碎碎念&#xff1a;有点难用&#xff0c;不丝滑&#xff08;以下介绍的难点不是真的难&#xff0c;只是有点点点难用&#xff09; 背景&#xff1a;需要实现表格的行列合并以及图标的嵌入&#xff0c;想到使用组件库组件来方便开发 链接&#xff1a;TDesign Web Vue Next 难点…...

jwt在express中token的加密解密实现方法

在我们前面学习了 JWT认证机制在Node.js中的详细阐述 之后&#xff0c;今天来详细学习一下token是如何生成的&#xff0c;secret密钥的加密解密过程是怎么样的。 安装依赖 express&#xff1a;用于创建服务器jsonwebtoken&#xff1a;用于生成和验证JWTbody-parser&#xff1…...

结构体、共用体的字节对齐

结构体 结构体嵌套时&#xff1a;先算一下嵌套的结构体大小 嵌套进来的结构体大小为16字节&#xff0c;仍然进行&#xff0c;8字节对齐 typedef struct {char name[20];//20字节//000开始 20字节 019 struct{int day; //000开始 4字节 003char swx; //004开始 1…...

【YOLOv3】源码(train.py)

概述 主要模块分析 参数解析与初始化 功能&#xff1a;解析命令行参数&#xff0c;设置训练配置项目经理制定详细的施工计划和资源分配日志记录与监控 功能&#xff1a;初始化日志记录器&#xff0c;配置监控系统项目经理使用监控和记录工具&#xff0c;实时跟踪施工进度和质量…...

帧缓存的分配

帧缓存实际上就是一块内存。在 Android 系统中分配与回收帧缓存&#xff0c;使用的是一个叫 ION 的内核模块&#xff0c;App 使用 ioctl 系统调用后&#xff0c;会在内核内存中分配一块符合要求的内存&#xff0c;用户态会拿到一个 fd&#xff08;有的地方也称之为 handle&…...

基于顺序表实现队列循环队列的处理

文章目录 1.假溢出的现象2.循环队列3.顺序表实现队列架构4.顺序表模拟实现队列5.设计循环队列&#xff08;校招难度&#xff09; 1.假溢出的现象 下面的这个就是我们的假溢出的这个现象的基本的来源&#xff1a; 我们的这个队列里面是有9个位置的&#xff0c;我们知道这个队列…...

磁珠选型规范

根据不同的应用场景&#xff0c;磁珠可以分为普通型磁珠&#xff0c;大电流型磁珠和尖峰型磁珠。 &#xff08;1&#xff09;普通型磁珠&#xff1a;主要用于电流比较小&#xff08;小于600mA&#xff09;.无特殊要求的场景&#xff0c;普通型磁珠的直流电阻一般不超过1Ω&…...

linux 点对点语音通话及直播推流实践一: linux USB声卡或耳机 基本配置

inux USB声卡或耳机 基本配置 工具安装查看设备录放音操作录音放音声音配置获取控制信息音量配置本文介绍 linux下alsa声音原件 工具使用方法,包括设备查询、声卡基本配置、录音放音等。 保证 alsa套件可正常操作和配置声卡,是实现SIP语音通话、音视频 采集及推拉流功能的基础…...

3DMAX镂空星花球建模插件FloralStarBall使用方法

3DMAX镂空星花球建模插件FloralStarBall使用教程 就是那个3DMAX镂空星花球建模&#xff0c;再也不用手动做了&#xff0c;使用3DMAX镂空星花球建模FloralStarBall插件可以一键生成&#xff01; 3DMAX镂空星花球建模插件FloralStarBall&#xff0c;经典星形球体的美丽变体。星形…...

window 安装 nodejs

方式一&#xff1a;使用 fnm 可能会出现 cmd 找不到 nodejs 和 npm 的情况&#xff0c;并且包也可能不知道哪一个 参考链接 Node.js — Download Node.js 使用 powershell 操作&#xff0c;要不然可能有些执行不了 # 安裝 fnm (快速 Node 管理器) winget install Schniz.fnm# …...

Autoware Universe 安装记录

前提&#xff1a; ubuntu20.04&#xff0c;英伟达显卡。 ROS2-Galactic安装 wget http://fishros.com/install -O fishros && . fishros 选择galactic(ROS2)版本&#xff0c;桌面版 ROS2-dev-tools安装 sudo apt install python3-testresources sudo apt update …...

每天40分玩转Django:Django部署概述

一、Django部署概述 在开发阶段,我们通常使用Django内置的轻量级开发服务器runserver。但在生产环境中,为了应对大量并发请求,需要使用高性能的WSGI服务器,如Gunicorn、uWSGI等。同时还要配置Nginx等Web服务器作为反向代理,实现负载均衡、静态文件处理等。下面是Django部署的整…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...