当前位置: 首页 > news >正文

numpy np.newaxis介绍

np.newaxis 是 NumPy 中用于增加数组维度的关键字。它的作用是为数组插入一个新的维度,从而改变数组的形状(shape)。


基本用法

  • np.newaxis 等价于 None,可以作为索引使用,用于在指定位置增加一个维度。
  • 增加的维度的大小为 1

语法

array[newaxis, ...]  # 在第 0 维增加一个维度
array[..., newaxis]  # 在最后一维增加一个维度
array[:, newaxis, :]  # 在指定位置增加一个维度

例子与解释

1. 在第 0 维增加一个维度
import numpy as nparr = np.array([1, 2, 3])  # 原始数组 shape: (3,)
new_arr = arr[np.newaxis, :]  # shape: (1, 3)print(new_arr)
# Output:
# [[1 2 3]]

解释

  • 原始数组 arr 是一维的,形状为 (3,)
  • 使用 np.newaxis 后,在第 0 维增加一个新维度,形状变为 (1, 3)

2. 在最后一维增加一个维度
arr = np.array([1, 2, 3])  # shape: (3,)
new_arr = arr[:, np.newaxis]  # shape: (3, 1)print(new_arr)
# Output:
# [[1]
#  [2]
#  [3]]

解释

  • 原始数组 arr 是一维的,形状为 (3,)
  • 使用 np.newaxis 后,在最后一维增加一个新维度,形状变为 (3, 1)

3. 用于多维数组
arr = np.array([[1, 2, 3], [4, 5, 6]])  # shape: (2, 3)# 在第 0 维增加
new_arr_1 = arr[np.newaxis, :, :]  # shape: (1, 2, 3)# 在第 1 维增加
new_arr_2 = arr[:, np.newaxis, :]  # shape: (2, 1, 3)# 在最后一维增加
new_arr_3 = arr[:, :, np.newaxis]  # shape: (2, 3, 1)print("Original Shape:", arr.shape)
print("Shape after newaxis at dim 0:", new_arr_1.shape)
print("Shape after newaxis at dim 1:", new_arr_2.shape)
print("Shape after newaxis at dim 2:", new_arr_3.shape)

实际应用

1. 转换向量为列向量或行向量

在机器学习或矩阵运算中,常需要将向量变为列向量或行向量。

arr = np.array([1, 2, 3])  # shape: (3,)# 转为列向量
col_vector = arr[:, np.newaxis]  # shape: (3, 1)# 转为行向量
row_vector = arr[np.newaxis, :]  # shape: (1, 3)print("Column Vector:\n", col_vector)
print("Row Vector:\n", row_vector)

2. 扩展广播机制

使用 np.newaxis 可以调整数组形状以实现广播操作。

arr1 = np.array([1, 2, 3])  # shape: (3,)
arr2 = np.array([4, 5])     # shape: (2,)# 调整维度
arr1_expanded = arr1[np.newaxis, :]  # shape: (1, 3)
arr2_expanded = arr2[:, np.newaxis]  # shape: (2, 1)result = arr1_expanded + arr2_expanded  # shape: (2, 3)print(result)
# Output:
# [[5 6 7]
#  [6 7 8]]

等价性

np.newaxis 等价于 None,下面两种写法是相同的:

arr = np.array([1, 2, 3])# 使用 np.newaxis
new_arr_1 = arr[np.newaxis, :]# 使用 None
new_arr_2 = arr[None, :]print(np.array_equal(new_arr_1, new_arr_2))  # Output: True

总结

  1. np.newaxis 是一种增加数组维度的简单方法,实质是为数组插入大小为 1 的新维度。
  2. 常用于:
    • 调整数组形状(如向量转列/行向量)。
    • 配合广播机制使用。
    • 为高维数据的操作做准备。
  3. 使用方式简单直观,可以通过指定插入位置灵活控制新维度的位置。

相关文章:

numpy np.newaxis介绍

np.newaxis 是 NumPy 中用于增加数组维度的关键字。它的作用是为数组插入一个新的维度,从而改变数组的形状(shape)。 基本用法 np.newaxis 等价于 None,可以作为索引使用,用于在指定位置增加一个维度。增加的维度的大…...

小程序配置文件 —— 16 项目配置文件和配置 sass

目录 项目配置文件配置 sass 项目配置文件 在创建项目的时候,每个项目的根目录生成两个 config.json 文件(project.config.json 和 project.private.config.json ),用于保存开发者在工具上做的个性化配置,例如和编译有…...

【yolov5】实现FPS游戏人物检测,并定位到矩形框上中部分,实现自瞄

介绍 本人机器学习小白,通过语言大模型百度进行搜索,磕磕绊绊的实现了初步效果,能有一些锁头效果,但识别速度不是非常快,且没有做敌友区分,效果不是非常的理想,但在4399小游戏中爽一下还是可以…...

概率统计与随机过程--作业5

一、推导题 二、计算题 1、某单位为了研究太阳镜销售和广告费用之间的关系,搜集了以下数据,使用回归分析方法得到线性回归模型: 广告费用(万元)x 2 5 6 7 22 25 28 30 22 18 销售量(个&#xf…...

“802.11g”,“802.11n”,“802.11ac”,“802.11ax”

802.11g、802.11n、802.11ac、802.11ax都是IEEE制定的无线局域网(WLAN)标准,它们各自具有不同的特点和性能。以下是对这四个标准的详细介绍: 1. 802.11g 定义:802.11g是IEEE制定的一种无线局域网标准,它提…...

Kubernetes 常用的网络插件

上篇内容跟大家简单聊了k8s网络模型原理。分别围绕着容器、Pod、Service、网络策略等展开了详细的讲解。这次想跟大家聊聊k8s的CNI网络插件。 CNI 是 Kubernetes 网络模型的核心组件,它是一个插件接口,允许用户选择和配置网络插件来管理 Pod 的网络。CN…...

Retrofit和rxjava 实现窜行请求,并行请求,循环多次请求,递归请求,错误重试

在使用 Retrofit 和 RxJava 时,可以通过多种方式实现多次请求,比如串行请求、并行请求、依赖请求等。以下是一些常见的实现方式: 1. 串行请求(依赖关系) 一个请求的结果作为另一个请求的输入,可以用 flat…...

2025年度好用便签推荐,电脑桌面便签app分享

在快节奏的现代生活中,高效的时间管理和任务规划变得尤为重要。一款好用的便签软件不仅能帮助我们记录灵感、待办事项,还能极大地提升我们的工作效率。 在众多电脑桌面便签中,好用便签以其出色的桌面便签功能脱颖而出,备受用户青…...

【论文解读】Arbitrary-steps Image Super-resolution via Diffusion Inversion

级别:arXiv Computer Vision and Pattern Recognition(2024)作者:Zongsheng Yue,Kang Liao,Chen Change Loy时间:2024论文链接:Arbitrary-steps Image Super-resolution via Diffusion Inversion摘要 技术概述:该技术基于扩散反转,通过设计部分噪声预测策略来构建扩散…...

kkFileView集成springboot:使用自定义预览接口(非minio预览接口),发现无法预览资源

目录 1、背景2、原因分析3、解决办法 1、背景 按照项目验收要求,需要对minio中存储的数据进行加密 之前提供给kkFileView的预览地址都是获取的minio预览地址 由于minio中的资源进行了加密处理,所以我们自定义预览接口(进行解密操作&#xff…...

被裁20240927 --- 嵌入式硬件开发 STM32篇

人很容易原谅别人的错误但很难原谅别人的正确 1. 文档、手册、指南、资源2. MCU 结构3. MCU 和 MPU 的区别4. 一些概念什么是看门狗 ?什么是 DMA ?什么是晶振 ?什么是片内外设?软件协议、硬件协议、数据协议、通讯协议、通信协议u…...

留学生交流互动系统|Java|SSM|VUE| 前后端分离

【技术栈】 1⃣️:架构: B/S、MVC 2⃣️:系统环境:Windowsh/Mac 3⃣️:开发环境:IDEA、JDK1.8、Maven、Mysql5.7 4⃣️:技术栈:Java、Mysql、SSM、Mybatis-Plus、VUE、jquery,html 5⃣️数据库可…...

C/C++ 数据结构与算法【图】 图+邻接矩阵+邻接表+DFS+BFS+最小生成树+最短路径+拓扑排序详细解析【日常学习,考研必备】带图+详细代码

一、图的定义 1)无向图,有向图,完全图 2)稀疏图,稠密图,网,邻接,关联 3)度 4)路径 5)连通图 6)权与网 7)子图 8&#xff0…...

Linux实验报告7-文件管理

目录 一:实验目的 二:实验内容 (1)查看/etc/inittab文件的权限属性,并指出该文件的所有者以及文件所属组群。 (2)新建文件test,设置文件权限为r--r-----。 (3)新建文件test2,设系统中有用户study和用户组studygr…...

RJ45网口模块设计

1、以太网概述及RJ45实物 2、常用网口信号介绍 3、RJ45网口布局布线要点分析 4、总结 1、变压器下面需要进行挖空处理,以免底下的铜引入干扰,(将多边形挖空区域的所在层设置为Multi-Layer多层) 2、为了更直观的看一个类中线的长…...

电子电器架构 --- 智能座舱HUD技术革新

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 所谓鸡汤,要么蛊惑你认命,要么怂恿你拼命,但都是回避问题的根源&…...

嵌入式开发中的机器人表情绘制

机器人的表情有两种,一种是贴图,一钟是调用图形API自绘。 贴图效果相对比较好,在存储空间大的情况下是可以采用的。 自绘比较麻烦,但在资源和空缺少的情况下,也是很有用的。而且自绘很容易通过调整参数加入随机效果&…...

orm01

静态文件处理 静态文件:如:图片、音频、视频、css、js等静态文件的相关配置也在 项目名/项目名/settings.py 文件中进行配置 - 配置静态文件的访问路径STATIC_URL- 功能:通过哪个 url 地址找静态文件- 默认配置:STATIC_URL /sta…...

Maven 测试和单元测试介绍

一、测试介绍 二、单元测试 1&#xff09;介绍 2&#xff09;快速入门 添加依赖 <dependencies><!-- junit依赖 --><dependency><groupId>org.junit.jupiter</groupId><artifactId>junit-jupiter</artifactId><version>5.9…...

Postman接口测试03|执行接口测试、全局变量和环境变量、接口关联、动态参数、断言

目录 七、Postman 1、安装 2、postman的界面介绍 八、Postman执行接口测试 1、请求页签 3、响应页签 九、Postman的环境变量和全局变量 1、创建环境变量和全局变量可以解决的问题 2、postman中的操作-全局变量 1️⃣手动设置 2️⃣代码设置 3️⃣界面获取 4️⃣代…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...

Vite中定义@软链接

在webpack中可以直接通过符号表示src路径&#xff0c;但是vite中默认不可以。 如何实现&#xff1a; vite中提供了resolve.alias&#xff1a;通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...