【机器学习】概述
文章目录
- 1. 机器学习三步骤
- 2. 机器学习图谱
- 2.1 任务类型 (Task)
- 2.2 模型选择 (Methods)
- 2.3 学习场景 (Scenario)
1. 机器学习三步骤
-
定义一个模型 (Define a set of function)
- 选择一组合适的函数来表示模型。
-
评估模型好坏 (Goodness of function)
- 找到一个损失函数,用来评价模型的性能。
-
选择最佳函数 (Pick the best function)
- 在模型中选择一个最终的函数,优化其性能。
2. 机器学习图谱
2.1 任务类型 (Task)
-
回归问题 (Regression)
- 输出为数值,是对连续变量的预测。
-
分类问题 (Classification)
- 输出为类别,是对离散变量的预测。
-
结构化问题 (Structured Prediction)
- 机器输出的是具有结构性的结果,如语音识别、机器翻译、人脸识别等。
2.2 模型选择 (Methods)
-
线性模型 (Linear Models)
-
非线性模型 (Non-linear Models)
- DNN / CNN (深度神经网络/卷积神经网络)
- SVM (支持向量机)
- 决策树 (Decision Trees)
- K-NN (K近邻)
-
同样的问题可以使用不同的模型进行解决。
2.3 学习场景 (Scenario)
-
监督学习 (Supervised Learning)
- 数据是有标注的,每个样本都对应一个标签。
-
半监督学习 (Semi-supervised Learning)
- 数据是部分有标注和部分无标注的。
-
无监督学习 (Unsupervised Learning)
- 数据是无标注的,主要关注特征提取而非标签,如聚类、降维等。
-
迁移学习 (Transfer Learning)
- 数据来自不同的类别,有时有标注有时无标注,通过迁移知识进行学习。
-
强化学习 (Reinforcement Learning)
- 机器通过与环境交互获得反馈(奖励/惩罚),如AlphaGo,并基于这些反馈调整策略。
相关文章:
【机器学习】概述
文章目录 1. 机器学习三步骤2. 机器学习图谱2.1 任务类型 (Task)2.2 模型选择 (Methods)2.3 学习场景 (Scenario) 1. 机器学习三步骤 定义一个模型 (Define a set of function) 选择一组合适的函数来表示模型。 评估模型好坏 (Goodness of function) 找到一个损失函数…...
音视频采集推流时间戳记录方案
音视频同步更多文章 深入理解音视频pts,dts,time_base以及时间数学公式_视频pts计算-CSDN博客 ffplay音视频同步分析_ffplay 音视频同步-CSDN博客 音视频采集打时间戳设计 实时音视频数据的采集和处理场景。具体来说: 采集阶段: 在音视频数据采集过…...
【Linux】:线程安全 + 死锁问题
📃个人主页:island1314 🔥个人专栏:Linux—登神长阶 ⛺️ 欢迎关注:👍点赞 👂🏽留言 😍收藏 💞 💞 💞 1. 线程安全和重入问题&…...
【深度学习】时间序列表示方法
自然界除了2D的图片数据之外,还有语音、文字,这些数据都有时间的先后顺序的。对于2D的图像的数据,可以用RGB值来表示像素的色彩度。语音可以用信号幅度值来表示,而Pytorch没有自带String支持,在表示文字之前需要进行Em…...
1.微服务灰度发布落地实践(方案设计)
文章目录 前言灰度发布的优点设计概要系统架构图流量控制客户端服务端 路由路径应用客户端实现核心组件分析1.网关2. spring-cloud3. dubbo4. nocas5. thread6. message queue 前言 微服务架构中的灰度发布(也称为金丝雀发布或渐进式发布)是一种在不影响…...
【UE5 C++课程系列笔记】15——Assert的基本使用
目录 概念 一、Check 二、Verify 三、Ensure 对比 基本使用 一、check的基本使用 二、ensure的基本使用 三、verify的基本使用 概念 assert 可在开发期间帮助检测和诊断不正常或无效的运行时条件。这些条件通常检查是否指针为非空、除数为非零、函数并非递归运行&…...
kubernetes Gateway API-1-部署和基础配置
文章目录 1 部署2 最简单的 Gateway3 基于主机名和请求头4 重定向 Redirects4.1 HTTP-to-HTTPS 重定向4.2 路径重定向4.2.1 ReplaceFullPath 替换完整路径4.2.2 ReplacePrefixMatch 替换路径前缀5 重写 Rewrites5.1 重写 主机名5.2 重写 路径5.2.1 重新完整路径5.2.1 重新部分路…...
likeAdmin架构部署(踩坑后的部署流程
1、gitee下载 https://gitee.com/likeadmin/likeadmin_java.git 自己克隆 2、项目注意 Maven:>3.8 ❤️.9 (最好不要3.9已经试过失败 node :node14 (不能是18 已经测试过包打不上去使用14的换源即可 JDK:JDK8 node 需要换源 npm c…...
【一款超好用的开源笔记Logseq本地Docker部署与远程使用指南】
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...
浅谈torch.utils.data.TensorDataset和torch.utils.data.DataLoader
1.torch.utils.data.TensorDataset 功能定位 torch.utils.data.TensorDataset 是一个将多个张量(Tensor)数据进行简单包装整合的数据集类,它主要的作用是将相关联的数据(比如特征数据和对应的标签数据等)组合在一起&…...
gesp(C++二级)(16)洛谷:B4037:[GESP202409 二级] 小杨的 N 字矩阵
gesp(C++二级)(16)洛谷:B4037:[GESP202409 二级] 小杨的 N 字矩阵 题目描述 小杨想要构造一个 m m m \times m m...
FFmpeg:详细安装教程与环境配置指南
FFmpeg 部署完整教程 在本篇博客中,我们将详细介绍如何下载并安装 FFmpeg,并将其添加到系统的环境变量中,以便在终端或命令行工具中直接调用。无论你是新手还是有一定基础的用户,这篇教程都能帮助你轻松完成 FFmpeg 的部署。 一、…...
《特征工程:自动化浪潮下的坚守与变革》
在机器学习的广阔天地中,特征工程一直占据着举足轻重的地位。它宛如一位幕后的工匠,精心雕琢着原始数据,将其转化为能够被机器学习模型高效利用的特征,从而推动模型性能迈向新的高度。然而,随着技术的飞速发展…...
webrtc 源码阅读 make_ref_counted模板函数用法
目录 1. 模板参数解析 1.1 typename T 1.2 typename... Args 1.3 typename std::enable_if::value, T>::type* nullptr 2. scoped_refptr 3. new RefCountedObject(std::forward(args)...); 4. 综合说明 5.在webrtc中的用法 5.1 peerConnectionFactory对象的构建过…...
【深度学习基础之多尺度特征提取】特征金字塔(Feature Pyramid)是如何在深度学习网络中提取多尺度特征的?附代码
【深度学习基础之多尺度特征提取】特征金字塔(Feature Pyramid)是如何在深度学习网络中提取多尺度特征的?附代码 【深度学习基础之多尺度特征提取】特征金字塔(Feature Pyramid)是如何在深度学习网络中提取多尺度特征…...
【Docker】离线安装 Docker
离线安装 Docker 在CentOS系统上安装Docker 1、下载 Docker 仓库文件 https://download.docker.com/linux/centos/docker-ce.repo 2、添加 Docker 仓库文件 将上一步下载的文件,移动到 /etc/yum.repos.d/ 目录 3、清除 YUM 缓存 sudo yum clean all sudo yum…...
三大行业案例:AI大模型+Agent实践全景
本文将从AI Agent和大模型的发展背景切入,结合51Talk、哈啰出行以及B站三个各具特色的行业案例,带你一窥事件驱动架构、RAG技术、人机协作流程,以及一整套行之有效的实操方法。具体包含内容有:51Talk如何让智能客服“主动进攻”&a…...
Dockerfile基础指令
1.FROM 基于基准镜像(建议使用官方提供的镜像作为基准镜像,相对安全一些) 举例: 制作基准镜像(基于centos:lastest) FROM cenots 不依赖于任何基准镜像 FROM scratch 依赖于9.0.22版本的tomcat镜像 FROM…...
12.30 linux 文件操作,磁盘分区挂载
ubuntu 在linux 对文件的相关操作【压缩,打包,软链接,文件权限】【head,tail,管道符,通配符,find,grep,cut等】脑图-CSDN博客 1.文件操作 在家目录下创建目录文件&#…...
[图形渲染]【Unity Shader】【游戏开发】 Shader数学基础17-法线变换基础与应用
在计算机图形学中,法线(normal) 是表示表面方向的向量。它在光照、阴影、碰撞检测等领域有着重要作用。本文将介绍如何在模型变换过程中正确变换法线,确保其在光照计算中的正确性,特别是法线与顶点的变换问题。 1. 法线与切线的基本概念 法线(Normal Vector) 法线(或…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
wpf在image控件上快速显示内存图像
wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...
2.3 物理层设备
在这个视频中,我们要学习工作在物理层的两种网络设备,分别是中继器和集线器。首先来看中继器。在计算机网络中两个节点之间,需要通过物理传输媒体或者说物理传输介质进行连接。像同轴电缆、双绞线就是典型的传输介质,假设A节点要给…...
