当前位置: 首页 > news >正文

论文实现:Reactive Nonholonomic Trajectory Generation via Parametric Optimal Control

1. 多项式螺旋
曲率:
κ ( s ) = a 0 + a 1 s + a 2 s 2 + a 3 s 3 + a 4 s 4 + a 5 s 5 \begin{align} \kappa(s) = a_0 + a_1s + a_2s^2 + a_3s^3 + a_4s^4 + a_5s^5 \end{align} κ(s)=a0+a1s+a2s2+a3s3+a4s4+a5s5
机器人朝向:
θ ( s ) = a 0 s + a 1 s 2 2 + a 2 s 3 3 + a 3 s 4 4 + a 4 s 5 5 + a 5 s 6 6 \begin{align} \theta(s) = a_0s + \frac{a_1s^2}{2} + \frac{a_2s^3}{3} + \frac{a_3s^4}{4} + \frac{a_4s^5}{5} + \frac{a_5s^6}{6} \end{align} θ(s)=a0s+2a1s2+3a2s3+4a3s4+5a4s5+6a5s6
轨迹:
x ( s ) = ∫ 0 s cos ⁡ ( θ ( s ) ) d s \begin{align} x(s) = \int_0^s{\cos(\theta(s))ds} \end{align} x(s)=0scos(θ(s))ds
y ( s ) = ∫ 0 s sin ⁡ ( θ ( s ) ) d s \begin{align} y(s) = \int_0^s{\sin(\theta(s))ds} \end{align} y(s)=0ssin(θ(s))ds

2. 边界条件
初始条件: s = 0 , x = 0 , y = 0 , θ = 0 s = 0,x = 0, y = 0, \theta = 0 s=0x=0,y=0,θ=0
结束条件: s = s f , x = x f , y = y f , θ = θ f s = s_f, x = x_f, y = y_f, \theta = \theta_f s=sf,x=xf,y=yf,θ=θf
x b = [ x f y f θ f ] T \begin{align} \bf{x_b} = \left[ x_f \ y_f \ \theta_f \right]^T \end{align} xb=[xf yf θf]T
参数:
q = [ a 0 a 1 a 2 a 3 a 4 a 5 s f ] T \begin{align} \bf{q} = \left[a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ s_f \right]^T \end{align} q=[a0 a1 a2 a3 a4 a5 sf]T
边界条件:
g ( q ) = h ( q ) − x b = { x ( s f ) − x f = 0 y ( s f ) − y f = 0 θ ( s f ) − θ f = 0 \begin{align} \bf{g(q)} = \bf{h(q)} - \bf{x_b} = \begin{cases} x(s_f) - x_f = 0 \\ y(s_f) - y_f = 0 \\ \theta(s_f) - \theta_f = 0 \end{cases} \end{align} g(q)=h(q)xb= x(sf)xf=0y(sf)yf=0θ(sf)θf=0

待续…

相关文章:

论文实现:Reactive Nonholonomic Trajectory Generation via Parametric Optimal Control

1. 多项式螺旋 曲率: κ ( s ) a 0 a 1 s a 2 s 2 a 3 s 3 a 4 s 4 a 5 s 5 \begin{align} \kappa(s) a_0 a_1s a_2s^2 a_3s^3 a_4s^4 a_5s^5 \end{align} κ(s)a0​a1​sa2​s2a3​s3a4​s4a5​s5​​ 机器人朝向: θ ( s ) a 0 s a 1 …...

基于单片机中药存放环境监测系统的实现

基于单片机中药存放环境监测系统的实现 项目开发背景 随着现代中药的广泛应用,中药材的存储环境对其质量有着至关重要的影响。温湿度、烟雾、火灾等环境因素,若不加以控制,将会导致中药材失效或变质。因此,设计一个基于单片机的…...

九垠赢+商业管理系统 Common.ashx 文件上传致RCE漏洞复现

0x01 产品简介 九垠赢+商业管理系统是基于互联网技术的进销存管理软件,适用于新零售背景下各种业态的线上线下一体化的商超经营管理。赢+ERP以商业管理系统为底座,融合了多种软、硬件解决方案,实现了从企业、供应商、三方平台到顾客等日常管理的全线数字化、智能化和移动化…...

速盾:服务器CDN加速解析的好处有哪些呢?

随着互联网应用的普及,越来越多的企业开始关注如何提升网站的访问速度和用户体验。为了实现这一目标,许多企业选择使用CDN(内容分发网络)来加速网站的内容分发。CDN通过在全球范围内分布多个节点,将内容缓存到离用户最…...

C++ 设计模式:备忘录模式(Memento Pattern)

链接:C 设计模式 链接:C 设计模式 - 状态模式 备忘录模式(Memento Pattern)是一种行为设计模式,它允许在不破坏封装性的前提下捕获和恢复对象的内部状态。这个模式在需要保存和恢复对象状态的场景中非常有用&#xff…...

Android 系统 Activity 系统层深度定制的方法、常见问题以及解决办法

Android 系统 Activity 系统层深度定制的方法、常见问题以及解决办法 目录 引言Activity 系统层概述Activity 系统架构图Activity 系统层深度定制的方法 4.1 自定义 Activity 生命周期4.2 自定义 Activity 启动流程4.3 自定义 Activity 转场动画4.4 自定义 Activity 窗口管理4…...

PDF怎么压缩得又小又清晰?5种PDF压缩方法

PDF 文件在日常办公与学习中使用极为频繁,可想要把它压缩得又小又清晰却困难重重。一方面,PDF 格式本身具有高度兼容性,集成了文字、图像、矢量图等多样元素,压缩时难以兼顾不同元素特性,稍不注意,文字就会…...

YK人工智能(三)——万字长文学会torch深度学习

2.1 张量 本节主要内容: 张量的简介PyTorch如何创建张量PyTorch中张量的操作PyTorch中张量的广播机制 2.1.1 简介 几何代数中定义的张量是基于向量和矩阵的推广,比如我们可以将标量视为零阶张量,矢量可以视为一阶张量,矩阵就是…...

关于CISP报名费用详情

CISP即“注册信息安全专业人员”,是中国信息安全测评中心实施的国家认证项目,旨在培养信息安全领域的专业人才。对于有意报考CISP的考生而言,了解报名考试费用是备考过程中不可或缺的一环。 CISP的报名考试费用主要包括培训费用、考试费用、…...

vim 按下esc后取消高亮

配置 ideavimrc文件 " 按下 Esc 键时自动取消高亮 " 在普通模式下按下 Esc 键取消高亮 nnoremap <Esc> :nohlsearch<CR> " 在插入模式下按下 Esc 键取消高亮 inoremap <Esc> <Esc>:nohlsearch<CR>" 额外&#xff1a;当退出…...

SwiftUI:多语言实现富文本插值

实现的UI需求&#xff1a; 要求&#xff1a; 英文显示&#xff1a;3068 people have joined this plan today! 中文显示&#xff1a;今日有 3068 人已加入此计划&#xff01; 实现代码&#xff1a; Text(AttributedString(localized:"**\(payPeoples)** people have joi…...

操作系统基础

概念 控制和管理操作系统软件和硬件 用户观点&#xff1a;用户和计算机之间的接口 基本概念 特征 并发&#xff0c;共享&#xff0c;虚拟&#xff0c;异步 功能 处理机管理&#xff0c;存储器管理&#xff0c;文件管理&#xff0c;设备管理 作为用户和硬件接口 命令接口&am…...

函数调用流程可用工具

方法 1、gdb&#xff0c;这个网上很多找找就有 2、tcmalloc&#xff0c;直接在调用的地方调一个malloc就可以看到调用的流程&#xff0c;具体见tcmalloc 3、backtrace&#xff0c;个人感觉这么最方便&#xff0c;具体见backtrace...

UniApp 页面布局基础

一、UniApp 页面布局简介 在当今的移动应用开发领域&#xff0c;跨平台开发已成为一种主流趋势。UniApp作为一款极具影响力的跨平台开发框架&#xff0c;凭借其“一套代码&#xff0c;多端运行”的特性&#xff0c;为开发者们提供了极大的便利&#xff0c;显著提升了开发效率。…...

2D图像测量到3D点云之物体三维尺寸测量!!!!

0&#xff0c;引言 本文将从双目采集的2D图像到3D点云进行转化&#xff0c;并进行物体尺寸测量&#xff0c;旨在为读者展示2D图像如何关联3D点云&#xff0c;并进行相关工业应用。 将2D图像转化为3D点云&#xff0c;并进行物体尺寸测量的技术&#xff0c;在工业领域有着广泛的…...

[TOTP]android kotlin实现 totp身份验证器 类似Google身份验证器

背景&#xff1a;自己或者公司用一些谷歌身份验证器或者microsoft身份验证器&#xff0c;下载来源不明&#xff0c;或者有广告&#xff0c;使用不安全。于是自己写一个&#xff0c;安全放心使用。 代码已开源&#xff1a;shixiaotian/sxt-android-totp: android totp authenti…...

2025决战智驾:从中阶卷到L3,车企需要抓好一个数据闭环

作者 |王博 编辑 |德新 全国都能开之后&#xff0c;智驾继续走向哪里&#xff1f; 2024年末&#xff0c;大部分主流车企已经实现了无&#xff08;高精度&#xff09;图全国都能开。而第一梯队的玩家&#xff0c;从以规则为主的算法框架&#xff0c;向神经网络模型为主的新架构…...

电子电气架构 --- 汽车电子电器设计概述

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 所谓鸡汤,要么蛊惑你认命,要么怂恿你拼命,但都是回避问题的根源,以现象替代逻辑,以情绪代替思考,把消极接受现实的懦弱,伪装成乐观面对不幸的…...

SpringAI从入门到熟练

学习SpringAI的记录情况 文章目录 前言 因公司需要故而学习SpringAI文档&#xff0c;故将自己所见所想写成文章&#xff0c;供大佬们参考 主要是为什么这么写呢&#xff0c;为何不抽出来呢&#xff0c;还是希望可以用的时候更加方便一点&#xff0c;如果大家有需求可以自行去…...

[算法] [leetcode-20] 有效的括号

20 有效的括号 给定一个只包括 ‘(’&#xff0c;‘)’&#xff0c;‘{’&#xff0c;‘}’&#xff0c;‘[’&#xff0c;‘]’ 的字符串 s &#xff0c;判断字符串是否有效。 有效字符串需满足&#xff1a; 左括号必须用相同类型的右括号闭合。 左括号必须以正确的顺序闭合…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

基于 TAPD 进行项目管理

起因 自己写了个小工具&#xff0c;仓库用的Github。之前在用markdown进行需求管理&#xff0c;现在随着功能的增加&#xff0c;感觉有点难以管理了&#xff0c;所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD&#xff0c;需要提供一个企业名新建一个项目&#…...