SpringAI从入门到熟练
学习SpringAI的记录情况
文章目录
前言
因公司需要故而学习SpringAI文档,故将自己所见所想写成文章,供大佬们参考
主要是为什么这么写呢,为何不抽出来呢,还是希望可以用的时候更加方便一点,如果大家有需求可以自行去优化。
SrpingAI入门
这里我用到的是智普AI,大家可以根据自己喜欢用的AI自由进行切换
至于API-KEY可自行去智谱AI开放平台可自行去找,这里新用户注册目前是还送2000万TOKEN的
引包
<!--智普AI--><dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-zhipuai-spring-boot-starter</artifactId></dependency>
配置文件
至于API-KEY可自行去智谱AI开放平台可自行去找,这里新用户注册目前是还送2000万TOKEN的
配置类
获取API-KEY
@Component
public class ChatConfig {//获取配置文件中的API-KEY@Value("${spring.ai.zhipuai.api-key}")private String apiKey;public String getApiKey() {return apiKey;}
}
测试用例代码
//为啥用这个模型呢,因为免费private static final String default_model = "GLM-4-Flash";//temperature 是一个超参数,用于控制生成文本的多样性和随机性。//低温度(例如:0.1 到 0.3):模型会生成更确定、常规和一致的输出。低温度通常会使模型产生更 加保守的回答,重复性较高,生成的内容更加准确、接近训练数据中的常见模式。//高温度(例如:0.7 到 1.0):模型的输出会更加随机、多样、创意性强。高温度会导致生成的内容 更加多样化,可能包括一些不太常见或创新性的回答,但也可能带来不太准确或不太连贯的结果。private static final double default_temperature = 0.7; @GetMapping("/AIchat")public BaseResponse<String> AIGeneration(@RequestParam(value = "message", defaultValue = "你是谁呢") String message) {// 创建ZhiPuAiChatOptions对象,设置模型和温度ZhiPuAiChatOptions options = ZhiPuAiChatOptions.builder().withModel(default_model).withTemperature(default_temperature).build();// 创建ZhiPuAiChatModel对象,传入ZhiPuAiApi和optionsChatModel chatModel = new ZhiPuAiChatModel(new ZhiPuAiApi(chatConfig.getApiKey()), options);// 创建ChatClient对象,传入chatModelChatClient build = ChatClient.builder(chatModel).build();String substring = "";String content = null;try {// 调用build.prompt()方法,传入用户消息,调用call()方法,获取返回内容content = build.prompt().user(message).call().content();} catch (Exception e) {// 获取异常信息String errorMessage = e.getMessage();// 获取异常信息中冒号后面的内容int i = errorMessage.lastIndexOf(":");String newString = errorMessage.substring(i + 2);// 去掉异常信息中的最后一个字符substring = newString.substring(0, newString.length() - 3);}// 如果异常信息不为空,抛出BusinessException异常if(!substring.isEmpty()){throw new BusinessException(ErrorCode.PARAMS_ERROR,substring);}// 返回成功结果return ResultUtils.success(content);}
测试AI返回结果
全参数响应结果
这里是对token的消耗做了一个统计,查看用户的所剩token情况的一个返回结果展示
其实也就只是把String类型的返回结果转成了ChatResponse类型仅此而已
测试用例代码
@GetMapping("/AIchat")public BaseResponse<ChatResponse> AIGeneration(@RequestParam(value = "message", defaultValue = "你是谁呢") String message) {// 创建ZhiPuAiChatOptions对象,设置模型和温度ZhiPuAiChatOptions options = ZhiPuAiChatOptions.builder().withModel(default_model).withTemperature(default_temperature).build();// 创建ZhiPuAiChatModel对象,传入ZhiPuAiApi和optionsChatModel chatModel = new ZhiPuAiChatModel(new ZhiPuAiApi(chatConfig.getApiKey()), options);// 创建ChatClient对象,传入chatModelChatClient build = ChatClient.builder(chatModel).build();String substring = "";ChatResponse chatResponse = null;try {chatResponse = build.prompt().user(message).call().chatResponse();} catch (Exception e) {// 获取异常信息String errorMessage = e.getMessage();// 获取异常信息中冒号后面的内容int i = errorMessage.lastIndexOf(":");String newString = errorMessage.substring(i + 2);// 去掉异常信息中的最后一个字符substring = newString.substring(0, newString.length() - 3);}// 如果异常信息不为空,抛出BusinessException异常if(!substring.isEmpty()){throw new BusinessException(ErrorCode.PARAMS_ERROR,substring);}// 返回成功结果return ResultUtils.success(chatResponse);}
返回结果
前端传递不同的模型测试方法
测试用例代码
@GetMapping("/chat")public BaseResponse<String> generation(@RequestParam(value = "message", defaultValue = "你是谁呢") String message,@RequestParam(value = "model", defaultValue = "GLM-4-Flash") String model,@RequestParam(value = "temperature", defaultValue = "0.7") double temperature) {// 创建新的 ZhiPuAiChatOptions 实例,根据请求的参数动态设置ZhiPuAiChatOptions options = ZhiPuAiChatOptions.builder().withModel(model).withTemperature(temperature).build();// 获取 ChatModel 实例,使用新的配置ChatModel chatModel = new ZhiPuAiChatModel(new ZhiPuAiApi(chatConfig.getApiKey()), options);ChatClient build = ChatClient.builder(chatModel).build();String substring = "";// 使用新的 ChatModel 进行对话生成String content = null;try {content = build.prompt().user(message).call().content();} catch (Exception e) {// 获取错误消息String errorMessage = e.getMessage();int i = errorMessage.lastIndexOf(":");String newString = errorMessage.substring(i + 2);substring = newString.substring(0, newString.length() - 3);}if(!substring.isEmpty()){throw new BusinessException(ErrorCode.PARAMS_ERROR,substring);}return ResultUtils.success(content);}
其实跟上面的代码差不多,只不过是从前端传递过来一个模型,当然这里我并没有对于上传上来的模型做校验,如果感兴趣的话,可自行查看,并解决
测试结果
这里可以看到我们的异常返回起到效果了,原谅我是一个穷鬼,不想花钱在测试这个上面
测试到这里,相信你已经知道了点什么,就是如果你问的问题较长的话,实际使用GET传输是有问题的,因为默认GET请求的长度是有限制的,建议自行换成POST请求,然后再继续往下
流式响应
测试用例代码
@GetMapping(value = "/AIStream",produces = MediaType.TEXT_EVENT_STREAM_VALUE)public Flux<String> AIStream(@RequestParam(value = "message", defaultValue = "你是谁呢") String message) {// 创建ZhiPuAiChatOptions对象,设置模型和温度ZhiPuAiChatOptions options = ZhiPuAiChatOptions.builder().withModel(default_model).withTemperature(default_temperature).build();// 创建ZhiPuAiChatModel对象,传入ZhiPuAiApi和optionsChatModel chatModel = new ZhiPuAiChatModel(new ZhiPuAiApi(chatConfig.getApiKey()), options);// 创建ChatClient对象,传入chatModelChatClient chatClient = ChatClient.builder(chatModel).build();Flux<String> content = chatClient.prompt().user(message).stream().content();// 返回成功结果return content;}
响应结果
这里使用的是SSE,SSE是一种服务端向客户端推送的一种技术,需要的可自行去浏览这个技术
流式响应全参数
测试用例代码
// 使用GetMapping注解,指定请求路径为/AIChatResponseStream,返回类型为TEXT_EVENT_STREAM_VALUE@GetMapping(value = "/AIChatResponseStream",produces = MediaType.TEXT_EVENT_STREAM_VALUE)// 定义一个方法,返回类型为Flux<ChatResponse>,参数为String类型的message,默认值为"你是谁呢"public Flux<ChatResponse> AIChatResponseStream(@RequestParam(value = "message", defaultValue = "你是谁呢") String message) {// 创建ZhiPuAiChatOptions对象,设置模型和温度ZhiPuAiChatOptions options = ZhiPuAiChatOptions.builder().withModel(default_model).withTemperature(default_temperature).build();// 创建ChatModel对象,传入ZhiPuAiApi和optionsChatModel chatModel = new ZhiPuAiChatModel(new ZhiPuAiApi(chatConfig.getApiKey()), options);// 创建ChatClient对象,传入chatModelChatClient chatClient = ChatClient.builder(chatModel).build();// 调用chatClient的prompt方法,传入message,返回一个Flux<ChatResponse>对象Flux<ChatResponse> chatResponseFlux = chatClient.prompt().user(message).stream().chatResponse();// 返回Flux<ChatResponse>对象return chatResponseFlux;}
响应结果
至于这里如何查看内容流式响应全参数输出完毕,有一个STOP的停止参数可以使用
位置贴到下面
//全参数流失响应地址接口停止标志--------------当然这里如果你要配合前端可以通过这个STOP来观察结果是否输出完毕,可以通过这个标志来停掉SSE连接 parsedData.results[0].metadata.finishReason === "STOP"
默认角色回复实现
测试用例代码
// 使用GetMapping注解,指定请求路径为/AIChatDefaultStream,返回类型为文本流@GetMapping(value = "/AIChatDefaultStream",produces = MediaType.TEXT_EVENT_STREAM_VALUE)public Flux<String> AIChatDefaultStream(// 使用@RequestParam注解,指定请求参数名为message,默认值为"你是谁呢"@RequestParam(value = "message", defaultValue = "你是谁呢") String message) {// 创建ZhiPuAiChatOptions对象,设置模型和温度ZhiPuAiChatOptions options = ZhiPuAiChatOptions.builder().withModel(default_model).withTemperature(default_temperature).build();// 创建ChatModel对象,使用ZhiPuAiChatModel和ZhiPuAiApiChatModel chatModel = new ZhiPuAiChatModel(new ZhiPuAiApi(chatConfig.getApiKey()), options);// 创建ChatClient对象,设置默认系统ChatClient chatClient = ChatClient.builder(chatModel).defaultSystem("你现在的身份是一个星轨会议系统的客服助手,请以友好、乐于助人且愉快的方式来回复。").build();// 调用chatClient的prompt方法,设置用户消息,并返回内容流Flux<String> content = chatClient.prompt().user(message).stream().content();// 返回内容流return content;}
响应结果
这里就可以看到响应结果他已经换成了星轨会议系统的客服助手,如果你希望做某一个角色的内容,你可以通过预训练这个参数,使得这个AI客服助手的回复更加友好。
AI知晓日期
测试用例代码
// 使用GetMapping注解,指定请求路径为/AIChatDefaultStream,返回类型为文本流@GetMapping(value = "/AIChatDefaultStream",produces = MediaType.TEXT_EVENT_STREAM_VALUE)public Flux<String> AIChatDefaultStream(// 使用@RequestParam注解,指定请求参数名为message,默认值为"你是谁呢"@RequestParam(value = "message", defaultValue = "你是谁呢") String message) {// 创建ZhiPuAiChatOptions对象,设置模型和温度ZhiPuAiChatOptions options = ZhiPuAiChatOptions.builder().withModel(default_model).withTemperature(default_temperature).build();// 创建ChatModel对象,使用ZhiPuAiChatModel和ZhiPuAiApiChatModel chatModel = new ZhiPuAiChatModel(new ZhiPuAiApi(chatConfig.getApiKey()), options);// 创建ChatClient对象,设置默认系统ChatClient chatClient = ChatClient.builder(chatModel).defaultSystem("你现在的身份是一个星轨会议系统的客服助手,请以友好、乐于助人且愉快的方式来回复。我希望你可以以中文的方式给我回答。今天的日期是 {current_date}.").build();// 调用chatClient的prompt方法,设置用户消息,并返回内容流Flux<String> content = chatClient.prompt().user(message).system(s->s.param("current_date", LocalDate.now().toString())).stream().content();// 返回内容流return content;}
响应结果
这样的话AI就知道当前的日期
记忆对话
测试用例代码
创建一个配置类引入ChatMemory
@Configuration
public class ZhiPuChatMemoryConfig {@Bean@Qualifier("customMemory")public ChatMemory chatMemory() {return new InMemoryChatMemory();}}
引入ChatMemory
// 使用GetMapping注解,指定请求路径为/AIChatDefaultStream,返回类型为文本流@GetMapping(value = "/AIChatDefaultStream",produces = MediaType.TEXT_EVENT_STREAM_VALUE)public Flux<String> AIChatDefaultStream(// 使用RequestParam注解,指定请求参数名为message,类型为String@RequestParam(value = "message") String message) {// 创建ZhiPuAiChatOptions对象,设置模型和温度ZhiPuAiChatOptions options = ZhiPuAiChatOptions.builder().withModel(default_model).withTemperature(default_temperature).build();// 创建ChatModel对象,传入ZhiPuAiApi和optionsChatModel chatModel = new ZhiPuAiChatModel(new ZhiPuAiApi(chatConfig.getApiKey()), options);// 创建ChatClient对象,传入chatModel,设置默认系统消息和默认顾问ChatClient chatClient = ChatClient.builder(chatModel).defaultSystem("你现在的身份是一个星轨会议系统的客服助手,请以友好、乐于助人且愉快的方式来回复。我希望你可以以中文的方式给我回答。这里我问你日期的话再回答,否则的话你不要回答,今天的日期是 {current_date}.")//.defaultAdvisors(new PromptChatMemoryAdvisor(chatMemory)).defaultAdvisors(new MessageChatMemoryAdvisor(chatMemory)).build();// 调用chatClient的prompt方法,设置用户消息、系统消息参数、顾问参数,返回内容流Flux<String> content = chatClient.prompt().user(message).system(s->s.param("current_date", LocalDate.now().toString())).advisors(a -> a.param(CHAT_MEMORY_RETRIEVE_SIZE_KEY, 100)).stream().content();// 返回内容流return content;}
响应结果
这样的话就会记住你最近的100条对话,当然这里你也可以自行实现ChatMemory,使用Redis去进行获取
上面两种记忆是不同的,具体详情,请看下表
特性 | MessageChatMemoryAdvisor | PromptChatMemoryAdvisor |
---|---|---|
记忆管理粒度 | 基于消息(Message)级别的记忆 | 基于提示(Prompt)级别的记忆 |
记忆的存储方式 | 将每一条消息存储到记忆中 | 生成合适的提示,将历史对话作为提示提供给模型 |
适用场景 | 适用于需要精细管理每一条消息的场景 | 适用于需要生成合适提示来为模型提供上下文的场景 |
如何影响对话 | 直接影响聊天记录,确保每一条消息都被记住 | 影响提示构造,确保生成的提示与上下文一致 |
内存管理的灵活性 | 依赖于每个消息的存储 | 提示的构造和上下文的动态管理 |
打印日志功能
测试用例代码
其实也就是再次添加一个Advisors,再控制台打印一下就可以
public class LoggingAdvisors implements RequestResponseAdvisor {@Overridepublic AdvisedRequest adviseRequest(AdvisedRequest request, Map<String, Object> adviseContext) {System.out.println("Request"+request);return request;}@Overridepublic int getOrder() {return 0;}
}
// 使用GetMapping注解,指定请求路径为/AIChatDefaultStream,返回类型为文本流@GetMapping(value = "/AIChatDefaultLoggingStream",produces = MediaType.TEXT_EVENT_STREAM_VALUE)public Flux<String> AIChatDefaultLoggingStream(// 使用RequestParam注解,指定请求参数名为message,类型为String@RequestParam(value = "message") String message) {// 创建ZhiPuAiChatOptions对象,设置模型和温度ZhiPuAiChatOptions options = ZhiPuAiChatOptions.builder().withModel(default_model).withTemperature(default_temperature).build();// 创建ChatModel对象,传入ZhiPuAiApi和optionsChatModel chatModel = new ZhiPuAiChatModel(new ZhiPuAiApi(chatConfig.getApiKey()), options);// 创建ChatClient对象,传入chatModel,设置默认系统消息和默认顾问ChatClient chatClient = ChatClient.builder(chatModel).defaultSystem("你现在的身份是一个星轨会议系统的客服助手,请以友好、乐于助人且愉快的方式来回复。我希望你可以以中文的方式给我回答。这里我问你日期的话再回答,否则的话你不要回答,今天的日期是 {current_date}.")//.defaultAdvisors(new PromptChatMemoryAdvisor(chatMemory)).defaultAdvisors(new MessageChatMemoryAdvisor(chatMemory),new LoggingAdvisors()).build();// 调用chatClient的prompt方法,设置用户消息、系统消息参数、顾问参数,返回内容流Flux<String> content = chatClient.prompt().user(message).system(s->s.param("current_date", LocalDate.now().toString())).advisors(a -> a.param(CHAT_MEMORY_RETRIEVE_SIZE_KEY, 100)).stream().content();// 返回内容流return content;}
响应结果
FunctionCall回调
测试用例代码
package com.hhh.springai_test.Client;import com.hhh.springai_test.config.ChatConfig;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.client.advisor.MessageChatMemoryAdvisor;
import org.springframework.ai.chat.memory.ChatMemory;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.zhipuai.ZhiPuAiChatModel;
import org.springframework.ai.zhipuai.ZhiPuAiChatOptions;
import org.springframework.ai.zhipuai.api.ZhiPuAiApi;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.stereotype.Component;@Component
public class ZhipuChatClient {@Resourceprivate ChatConfig chatConfig;@Autowired@Qualifier("customMemory") // 明确指定使用你自定义的 ChatMemory 实现private ChatMemory chatMemory;public ChatClient getZhipuChatClient() {ZhiPuAiChatOptions options = ZhiPuAiChatOptions.builder().withModel("GLM-4-Flash").withTemperature(0.95F).build();// 创建ChatModel对象,传入ZhiPuAiApi和optionsChatModel chatModel = new ZhiPuAiChatModel(new ZhiPuAiApi(chatConfig.getApiKey()), options);// 创建ChatClient对象,传入chatModel,设置默认系统消息和默认顾问ChatClient chatClient = ChatClient.builder(chatModel).defaultSystem("你现在的身份是一个星轨会议系统的客服助手,请以友好、乐于助人且愉快的方式来回复。我希望你可以以中文的方式给我回答。这里我问你日期的话再回答,否则的话你不要回答").defaultAdvisors(new MessageChatMemoryAdvisor(chatMemory)).build();return chatClient;}
}
@GetMapping(value = "/AIChatDefaultLoggingStream", produces = MediaType.TEXT_EVENT_STREAM_VALUE)public Flux<String> AIChatDefaultLoggingStream(@RequestParam(value = "message") String message) {Flux<String> content = zhipuChatClient.getZhipuChatClient().prompt().user(message).function("report", "举报", new Function<MyController.Request, Flux<String>>() {@Overridepublic Flux<String> apply(MyController.Request request) {System.out.println("举报名字是" + request.name);return Flux.just("星轨");}}).stream().content();return content;}
测试用例结果
可以看到日志也已经解决了,在这里遇到了整整两天的bug,一直在尝试使用functions,通过传递functionBean来进行解决,但是一直是有问题的,但是一直报错,只能使用这种方式来解决,当然,如果大佬们有好的文章,记得可以推荐我使用一下,谢谢各位大佬们
相关文章:

SpringAI从入门到熟练
学习SpringAI的记录情况 文章目录 前言 因公司需要故而学习SpringAI文档,故将自己所见所想写成文章,供大佬们参考 主要是为什么这么写呢,为何不抽出来呢,还是希望可以用的时候更加方便一点,如果大家有需求可以自行去…...

[算法] [leetcode-20] 有效的括号
20 有效的括号 给定一个只包括 ‘(’,‘)’,‘{’,‘}’,‘[’,‘]’ 的字符串 s ,判断字符串是否有效。 有效字符串需满足: 左括号必须用相同类型的右括号闭合。 左括号必须以正确的顺序闭合…...

R语言入门笔记:第一节,快速了解R语言——文件与基础操作
关于 R 语言的简单介绍 上一期 R 语言入门笔记里面我简单介绍了 R 语言的安装和使用方法,以及各项避免踩坑的注意事项。我想把这个系列的笔记持续写下去。 这份笔记只是我的 R 语言入门学习笔记,而不是一套 R 语言教程。换句话说:这份笔记不…...

【亚马逊云】基于Amazon EC2实例部署 NextCloud 云网盘并使用 Docker-compose 搭建 ONLYOFFICE 企业在线办公应用软件
文章目录 1. 部署EC2实例2. 安装 Docker 服务3. 安装docker-compose4. 创建Docker-compose文件5. 创建nginx.conf文件6. 运行docker-compose命令开始部署7. 访问ONLYOFFICE插件8. 访问NextCloud云盘9. 下载并启用ONLYOFFICE插件10. 上传文件测试11. 所遇问题12. 参考链接 1. 部…...

java Redisson 实现限流每秒/分钟/小时限制N个
1.引入maven包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency><dependency><groupId>org.redisson</groupId><artifactId>red…...
【漫话机器学习系列】029.累积分布函数(Cumulative Distribution Function)
累积分布函数(Cumulative Distribution Function, CDF) 累积分布函数(CDF)是概率论和统计学中的一个基本概念,用于描述随机变量取值的累积概率分布情况。它在理论研究和实际应用中广泛使用。 定义 给定随机变量 X&am…...

设计模式之访问者模式:一楼千面 各有玄机
~犬📰余~ “我欲贱而贵,愚而智,贫而富,可乎? 曰:其唯学乎” 一、访问者模式概述 \quad 江湖中有一个传说:在遥远的东方,有一座神秘的玉楼。每当武林中人来访,楼中的各个房…...

AI 编程的世界:用Cursor编写评分项目
AI 编程的世界:用Cursor编写评分项目 今天是2024年的最后一天,祝大家在新的一年,健康开心快乐! 岁末之际,星辰为伴,灯火长明,我终于在 2024 年的最后一天成功上线了 AI 编程项目。回首这一年&am…...

Cesium教程(二十三):Cesium实现下雨场景
文章目录 实现效果代码引入js文件创建容器创建视图定义下雨场景完整代码下载实现效果 代码 在 Cesium 中利用PostProcessStageLibrary实现下雪场景,你可以按照以下步骤进行: 创建一个 PostProcessStage:首先,你需要创建一个PostProcessStage对象,它将用于定义下雪效果的渲…...

SpringCloudAlibaba技术栈-Higress
1、什么是Higress? 云原生网关,干啥的?用通俗易懂的话来说,微服务架构下Higress 就像是一个智能的“交通警察”,它站在你的网络世界里,负责指挥和调度所有进出的“车辆”(也就是数据流量)。它的…...

uniapp 微信小程序开发使用高德地图、腾讯地图
一、高德地图 1.注册高德地图开放平台账号 (1)创建应用 这个key 第3步骤,配置到项目中locationGps.js 2.下载高德地图微信小程序插件 (1)下载地址 高德地图API | 微信小程序插件 (2)引入项目…...

Springboot:后端接收数组形式参数
1、接收端写法 PermissionAnnotation(permissionName "",isCheckToken true)PostMapping("/batchDeleteByIds")public ReturnBean webPageSelf( NotNull(message "请选择要删除的单据!") Long[] ids) {for (Long string : ids) {l…...

Postman[2] 入门——界面介绍
可参考官方 文档 Postman 导航 | Postman 官方帮助文档中文版Postman 拥有各种工具、视图和控件,帮助你管理 API 项目。本指南是对 Postman 主要界面区域的高级概述:https://postman.xiniushu.com/docs/getting-started/navigating-postman 1. Header&a…...

1月第四讲:Java Web学生自习管理系统
一、项目背景与需求分析 随着网络技术的不断发展和学校规模的扩大,学生自习管理系统的需求日益增加。传统的自习管理方式存在效率低下、资源浪费等问题,因此,开发一个智能化的学生自习管理系统显得尤为重要。该系统旨在提高自习室的利用率和…...

【Redis】Redis 典型应用 - 缓存 (cache)
目录 1. 什么是缓存 2. 使用 Redis 作为缓存 3. 缓存的更新策略 3.1 定期生成 3.2 实时生成 4. 缓存的淘汰策略 5. 缓存预热, 缓存穿透, 缓存雪崩 和 缓存击穿 关于缓存预热 (Cache preheating) 关于缓存穿透 (Cache penetration) 关于缓存雪崩 (Cache avalanche) 关…...

HTML——38.Span标签和字符实体
<!DOCTYPE html> <html><head><meta charset"UTF-8"><title>span标签和字符实体</title><style type"text/css">h1{text-align: center;}p{text-indent: 2em;}span{color: red;}</style></head><…...

ROS2+OpenCV综合应用--10. AprilTag标签码追踪
1. 简介 apriltag标签码追踪是在apriltag标签码识别的基础上,增加了小车摄像头云台运动的功能,摄像头会保持标签码在视觉中间而运动,根据这一特性,从而实现标签码追踪功能。 2. 启动 2.1 程序启动前的准备 本次apriltag标签码使…...

python Celery 是一个基于分布式消息传递的异步任务队列系统
Celery 是一个基于分布式消息传递的异步任务队列系统,主要用于处理耗时任务、定时任务和周期性任务。它能够将任务分配到多个工作节点(Worker)上执行,从而提高应用程序的性能和可扩展性。Celery 是 Python 生态中最流行的任务队列…...

嵌入式硬件杂谈(七)IGBT MOS管 三极管应用场景与区别
引言:在现代嵌入式硬件设计中,开关元件作为电路中的重要组成部分,起着至关重要的作用。三种主要的开关元件——IGBT(绝缘栅双极型晶体管)、MOSFET(金属氧化物半导体场效应晶体管)和三极管&#…...

麒麟信安云在长沙某银行的应用入选“云建设与应用领航计划(2024)”,打造湖湘金融云化升级优质范本
12月26日,2024云计算产业和标准应用大会在北京成功召开。大会汇集政产学研用各方专家学者,共同探讨云计算产业发展方向和未来机遇,展示云计算标准化工作重要成果。 会上,云建设与应用领航计划(2024)建云用…...

好用的随机生成图片的网站
官网: Lorem Picsum 获取自定义大小的随机图像 https://picsum.photos/200/300 获取正方形图像 https://picsum.photos/200 获取特定类型的图像 通过添加到 /id/{image} url 的开头来获取特定图像。 https://picsum.photos/id/237/200/300 获取静态随机图像…...

添加 env 配置,解决import路径问题
添加 env 配置,解决import路径问题 { // 使用 IntelliSense 了解相关属性。 // 悬停以查看现有属性的描述。 // 欲了解更多信息,请访问: https://go.microsoft.com/fwlink/?linkid830387 “version”: “0.2.0”, “configurations”: [ {"name&q…...

Go work stealing 机制
Go语言的Work Stealing(工作窃取)机制是一种用于调度Goroutines(协程)的策略,其核心目的是最大化CPU使用率,减少任务调度的开销,并提高并发性能和吞吐量。以下是Go Work Stealing机制的详细解释…...

基础数据结构--二叉树
一、二叉树的定义 二叉树是 n( n > 0 ) 个结点组成的有限集合,这个集合要么是空集(当 n 等于 0 时),要么是由一个根结点和两棵互不相交的二叉树组成。其中这两棵互不相交的二叉树被称为根结点的左子树和右子树。 如图所示&am…...

《C++设计模式》策略模式
文章目录 1、引言1.1 什么是策略模式1.2 策略模式的应用场景1.3 本文结构概览 2、策略模式的基本概念2.1 定义与结构2.2 核心角色解析2.2.1 策略接口(Strategy)2.2.2 具体策略实现(ConcreteStrategy)2.2.3 上下文(Cont…...

JavaScript学习记录6
第一节 算数运算符 1. 概述 JavaScript 共提供10个算术运算符,用来完成基本的算术运算。 加法运算符x y减法运算符 x - y乘法运算符 x * y除法运算符x / y指数运算符x ** y余数运算符x % y自增运算符x 、x自减运算符--x 、x--数值运算符 x负数值运算符-x 减法、…...

如何在没有 iCloud 的情况下将数据从 iPhone 传输到 iPhone
概括 您可能会遇到将数据从 iPhone 转移到 iPhone 的情况,尤其是当您获得新的 iPhone 15/14 时,您会很兴奋并希望将数据转移到它。 使用iCloud最终可以做到这一点,但它的缺点也不容忽视,阻碍了你选择它。例如,您需要…...

Doris安装部署
Doris 概述 Apache Doris由百度大数据部研发(之前叫百度 Palo,2018年贡献到 Apache 社区后,更名为 Doris ),在百度内部,有超过200个产品线在使用,部署机器超过1000台,单一业务最大可…...

[服务器][教程]Ubuntu24.04 Server开机自动挂载硬盘教程
1. 查看硬盘ID ls -l /dev/disk/by-uuid可以看到对应的UUID所对应的分区 2. 创建挂载文件夹 创建好文件夹即可 3. 修改配置文件 sudo vim /etc/fstab把对应的UUID和创建的挂载目录对应即可 其中# Personal mount points下面的是自己新添加的 :分区定位ÿ…...

io多路复用, select, poll, epoll
系列文章目录 异步I/O操作函数aio_xxx函数 https://blog.csdn.net/surfaceyan/article/details/134710393 文章目录 系列文章目录前言一、5种IO模型二、IO多路复用APIselectpollepoll 三、两种高效的事件处理模式Reactor模式Proactor模式模拟 Proactor 模式基于事件驱动的非阻…...