当前位置: 首页 > news >正文

人工智能知识分享第四天-线性回归

线性回归

线性回归介绍

线性回归概念

  • 线性回归(Linear regression)是利用 回归方程(函数)一个或多个自变量(特征值)和因变量(目标值)之间 关系进行建模的一种分析方式。
    在这里插入图片描述
    注意事项:

1 为什么叫线性模型?因为求解的w,都是w的零次幂(常数项)所以叫成线性模型

2 在线性回归中,从数据中获取的规律其实就是学习权重系数w

3 某一个权重值w越大,说明这个权重的数据对房子价格影响越大

线性回归分类

  • 一元线性回归

    y = kx +b
    目标值只与一个因变量有关系

  • 多元线性回归
    在这里插入图片描述

线性回归问题的求解

预测6号体重

已知数据:
在这里插入图片描述
需求:6号身高是176,请预测体重?

在这里插入图片描述

损失函数

需要设置一个评判标准
误差概念:用预测值y – 真实值y就是误差

损失函数:衡量每个样本预测值与真实值效果的函数

“红色直线能更好的拟合所有点”也就是误差最小,误差和最小

损失函数数学如何表达呢?又如何求损失函数的最小值呢?
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

当损失函数取最小值时,得到k就是最优解
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
想求一条直线更好的拟合所有点 y = kx + b

  • ​ 引入损失函数(衡量预测值和真实值效果) Loss(k, b)

  • ​ 通过一个优化方法,求损失函数最小值,得到K最优解

  • 在这里插入图片描述

  • 回归的损失函数:

  • 均方误差 (Mean-Square Error, MSE)

  • 在这里插入图片描述

  • 平均绝对误差 (Mean Absolute Error , MAE)

  • 在这里插入图片描述
    在这里插入图片描述

多元线性回归的解析解-正规方程法

在这里插入图片描述

在这里插入图片描述

梯度下降算法
梯度下降算法思想

什么是梯度下降法

• 求解函数极值还有更通用的方法就是梯度下降法。顾名思义:沿着梯度下降的方向求解极小值 • 举个例子:坡度最陡下山法
在这里插入图片描述

  • 输入:初始化位置S;每步距离为a 。输出:从位置S到达山底
  • 步骤1:令初始化位置为山的任意位置S
  • 步骤2:在当前位置环顾四周,如果四周都比S高返回S;否则执行步骤3
  • 步骤3: 在当前位置环顾四周,寻找坡度最陡的方向,令其为x方向
  • 步骤4:沿着x方向往下走,长度为a,到达新的位置S‘
  • 步骤5:在S‘位置环顾四周,如果四周都比S‘高,则返回S‘。否则转到步骤3

小结:通过循环迭代的方法不断更新位置S (相当于不断更新权重参数w)
最终找到最优解 这个方法可用来求损失函数最优解, 比正规方程更通用

梯度下降过程就和下山场景类似
可微分的损失函数,代表着一座山
寻找的函数的最小值,也就是山底

在这里插入图片描述

正规方程和梯度下降算法的对比

在这里插入图片描述

回归评估方法

为什么要进行线性回归模型的评估

我们希望衡量预测值和真实值之间的差距,

会用到MAE、MSE、RMSE多种测评函数进行评价

平均绝对误差

Mean Absolute Error (MAE)
在这里插入图片描述

  • 上面的公式中:n 为样本数量, y 为实际值, y ^ \hat{y} y^ 为预测值
  • MAE 越小模型预测约准确
    Sklearn 中MAE的API
from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_test,y_predict)

均方误差

Mean Squared Error (MSE)
在这里插入图片描述

  • 上面的公式中:n 为样本数量, y 为实际值, y ^ \hat{y} y^ 为预测值
  • MSE 越小模型预测约准确

Sklearn 中MSE的API

from sklearn.metrics import mean_squared_error
mean_squared_error(y_test,y_predict)

均方根误差

Root Mean Squared Error (RMSE)
在这里插入图片描述

  • 上面的公式中:n 为样本数量, y 为实际值, y ^ \hat{y} y^ 为预测值
  • RMSE 越小模型预测约准确

三种指标的比较

我们绘制了一条直线 y = 2x +5 用来拟合 y = 2x + 5 + e. 这些数据点,其中e为噪声
在这里插入图片描述
从上图中我们发现 MAE 和 RMSE 非常接近,都表明模型的误差很低(MAE 或 RMSE 越小,误差越小!)。 但是MAE 和 RMSE 有什么区别?为什么MAE较低?

  • 对比MAE 和 RMSE的公式,RMSE的计算公式中有一个平方项,因此:大的误差将被平方,因此会增加 RMSE 的值

  • 可以得出结论,RMSE 会放大预测误差较大的样本对结果的影响,而 MAE 只是给出了平均误差

  • 由于 RMSE 对误差的 平方和求平均 再开根号,大多数情况下RMSE>MAE

    举例 (1+3)/2 = 2 ( 1 2 + 3 2 ) / 2 = 10 / 2 = 5 = 2.236 \sqrt{(1^2+3^2)/2 }= \sqrt{10/2} = \sqrt{5} = 2.236 (12+32)/2 =10/2 =5 =2.236

我们再看下一个例子

在这里插入图片描述
橙色线与第一张图中的直线一样:y = 2x +5

蓝色的点为: y = y + sin(x)*exp(x/20) + e 其中 exp() 表示指数函数

我们看到对比第一张图,所有的指标都变大了,RMSE 几乎是 MAE 值的两倍,因为它对预测误差较大的点比较敏感

我们是否可以得出结论: RMSE是更好的指标? 某些情况下MAE更有优势,例如:

  • 假设数据中有少数异常点偏差很大,如果此时根据 RMSE 选择线性回归模型,可能会选出过拟合的模型来
  • 在这种情况下,由于数据中的异常点极少,选择具有最低 MAE 的回归模型可能更合适
  • 除此之外,当两个模型计算RMSE时数据量不一致,也不适合在一起比较
    今天先分享到这里
    坚持分享 共同进步

相关文章:

人工智能知识分享第四天-线性回归

线性回归 线性回归介绍 线性回归概念 线性回归(Linear regression)是利用 回归方程(函数) 对 一个或多个自变量(特征值)和因变量(目标值)之间 关系进行建模的一种分析方式。 注意事项: 1 为什么叫线性模型?因为求解的w,都是w的零次幂&am…...

Appium 2.0:移动自动化测试的革新之旅

关注开源优测不迷路 大数据测试过程、策略及挑战 测试框架原理,构建成功的基石 在自动化测试工作之前,你应该知道的10条建议 在自动化测试中,重要的不是工具 在移动应用开发的领域中,Appium 作为一款强大的自动化测试工具&#xf…...

牛客网最新1129道 Java 面试题及答案整理

前言 面试,跳槽,每天都在发生,而对程序员来说"金三银四"更是面试和跳槽的高峰期,跳槽,更是很常见的,对于每个人来说,跳槽的意义也各不相同,可能是一个人更向往一个更大的…...

Swift Combine 学习(六):自定义 Publisher 和 Subscriber

Swift Combine 学习(一):Combine 初印象Swift Combine 学习(二):发布者 PublisherSwift Combine 学习(三):Subscription和 SubscriberSwift Combine 学习(四&…...

Vue-router知识点汇总

import Vue from vue import Router from vue-router Vue.use(Router) import Layout from /layout export const constantRoutes [{path: /forgetpsd,name: forgetPsd,// 命名路由 &#xff0c;跳转<router-link :to"{ name: forgetPsdr, params: { userId: 123 }}&q…...

java AQS

什么是AQS AQS&#xff08;AbstractQueuedSynchronizer&#xff0c;抽象队列同步器&#xff09;是 Java 中并发控制的一种机制&#xff0c;位于 java.util.concurrent.locks 包下&#xff0c;它为构建锁、信号量等同步工具提供了一个框架。AQS 通过 队列 来管理多个线程之间的…...

L25.【LeetCode笔记】 三步问题的四种解法(含矩阵精彩解法!)

目录 1.题目 2.三种常规解法 方法1:递归做 ​编辑 方法2:改用循环做 初写的代码 提交结果 分析 修改后的代码 提交结果 for循环的其他写法 提交结果 方法3:循环数组 提交结果 3.方法4:矩阵 算法 代码实践 1.先计算矩阵n次方 2.后将矩阵n次方嵌入递推式中 提…...

sdut-C语言实验-合数分解

sdut-C语言实验-合数分解 分数 12 全屏浏览 切换布局 作者 马新娟 单位 山东理工大学 合数是指在大于1的整数中&#xff0c;除了1和本身外&#xff0c;还能被其他数整除的数。‌例如&#xff0c;4、6、8、9、10等都是合数。把一个合数分解成若干个质因数乘积的形式(即求质因…...

深入理解 pytest Fixture 方法及其应用

在 Python 自动化测试领域&#xff0c;pytest 是当之无愧的王者。提到 pytest&#xff0c;不得不说它的一大核心功能——Fixture。Fixture 的强大&#xff0c;让复杂的测试流程变得井井有条&#xff0c;让测试代码更加灵活和可复用。 那么&#xff0c;pytest 的 Fixture 究竟是…...

在Linux上获取MS(如Media Server)中的RTP流并录制为双轨PCM格式的WAV文件

在Linux上获取MS(如Media Server)中的RTP流并录制为双轨PCM格式的WAV文件 一、RTP流与WAV文件格式二、实现步骤三、伪代码示例四、C语言示例代码五、关键点说明六、总结在Linux操作系统上,从媒体服务器(如Media Server,简称MS)获取RTP(Real-time Transport Protocol)流…...

Midjourney技术浅析(八):交互与反馈

Midjourney 的用户交互与反馈通过用户输入&#xff08;User Input&#xff09;和用户反馈&#xff08;User Feedback&#xff09;机制&#xff0c;不断优化和改进图像生成的质量和用户满意度。 一、用户交互与反馈模块概述 用户交互与反馈模块的主要功能包括&#xff1a; 1.…...

【Spring MVC 核心机制】核心组件和工作流程解析

在 Web 应用开发中&#xff0c;处理用户请求的逻辑常常会涉及到路径匹配、请求分发、视图渲染等多个环节。Spring MVC 作为一款强大的 Web 框架&#xff0c;将这些复杂的操作高度抽象化&#xff0c;通过组件协作简化了开发者的工作。 无论是处理表单请求、生成动态页面&#x…...

回归问题的等量分层

目录 一、说明 二、什么是分层抽样&#xff1f; 三、那么回归又如何呢&#xff1f; 四、回归分层&#xff08;Stratification on Regression&#xff09; 一、说明 在同一个数据集中&#xff0c;我们可以看成是一个抽样体。然而&#xff0c;我们如果将这个抽样体分成两份&#…...

Unity-Mirror网络框架-从入门到精通之Basic示例

文章目录 前言Basic示例场景元素预制体元素代码逻辑BasicNetManagerPlayer逻辑SyncVars属性Server逻辑Client逻辑 PlayerUI逻辑 最后 前言 在现代游戏开发中&#xff0c;网络功能日益成为提升游戏体验的关键组成部分。Mirror是一个用于Unity的开源网络框架&#xff0c;专为多人…...

CSS 图片廊:网页设计的艺术与技巧

CSS 图片廊&#xff1a;网页设计的艺术与技巧 引言 在网页设计中&#xff0c;图片廊是一个重要的组成部分&#xff0c;它能够以视觉吸引的方式展示图片集合&#xff0c;增强用户的浏览体验。CSS&#xff08;层叠样式表&#xff09;作为网页设计的主要语言之一&#xff0c;提供…...

AI 发展的第一驱动力:人才引领变革

在科技蓬勃发展的当下&#xff0c;AI 成为了时代的焦点&#xff0c;然而其发展并非一帆风顺&#xff0c;究竟什么才是推动 AI 持续前行的关键力量呢&#xff1f; 目录 AI 发展现状剖析 期望与现实的落差 落地困境根源 人才&#xff1a;AI 发展的核心动力​编辑 技术突破的…...

[创业之路-229]:《华为闭环战略管理》-5-平衡记分卡与战略地图

目录 一、平衡记分卡 1. 财务角度&#xff1a; 2. 客户角度&#xff1a; 3. 内部运营角度&#xff1a; 4. 学习与成长角度&#xff1a; 二、BSC战略地图 1、核心内容 2、绘制目的 3、绘制方法 4、注意事项 一、平衡记分卡 平衡记分卡&#xff08;Balanced Scorecard&…...

用uniapp写一个播放视频首页页面代码

效果如下图所示 首页有导航栏&#xff0c;搜索框&#xff0c;和视频列表&#xff0c; 导航栏如下图 搜索框如下图 视频列表如下图 文件目录 视频首页页面代码如下 <template> <view class"video-home"> <!-- 搜索栏 --> <view class…...

【视觉SLAM:八、后端Ⅰ】

视觉SLAM的后端主要解决状态估计问题&#xff0c;它是优化相机轨迹和地图点的过程&#xff0c;从数学上看属于非线性优化问题。后端的目标是结合传感器数据&#xff0c;通过最优估计获取系统的状态&#xff08;包括相机位姿和场景结构&#xff09;&#xff0c;在状态估计过程中…...

PaddleOCROCR关键信息抽取训练过程

步骤1&#xff1a;python版本3.8.20 步骤2&#xff1a;下载代码&#xff0c;安装依赖 git clone https://gitee.com/PaddlePaddle/PaddleOCR.git pip uninstall opencv-python -y # 安装PaddleOCR的依赖 ! pip install -r requirements.txt # 安装关键信息抽取任务的依赖 !…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...