当前位置: 首页 > news >正文

人工智能知识分享第四天-线性回归

线性回归

线性回归介绍

线性回归概念

  • 线性回归(Linear regression)是利用 回归方程(函数)一个或多个自变量(特征值)和因变量(目标值)之间 关系进行建模的一种分析方式。
    在这里插入图片描述
    注意事项:

1 为什么叫线性模型?因为求解的w,都是w的零次幂(常数项)所以叫成线性模型

2 在线性回归中,从数据中获取的规律其实就是学习权重系数w

3 某一个权重值w越大,说明这个权重的数据对房子价格影响越大

线性回归分类

  • 一元线性回归

    y = kx +b
    目标值只与一个因变量有关系

  • 多元线性回归
    在这里插入图片描述

线性回归问题的求解

预测6号体重

已知数据:
在这里插入图片描述
需求:6号身高是176,请预测体重?

在这里插入图片描述

损失函数

需要设置一个评判标准
误差概念:用预测值y – 真实值y就是误差

损失函数:衡量每个样本预测值与真实值效果的函数

“红色直线能更好的拟合所有点”也就是误差最小,误差和最小

损失函数数学如何表达呢?又如何求损失函数的最小值呢?
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

当损失函数取最小值时,得到k就是最优解
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
想求一条直线更好的拟合所有点 y = kx + b

  • ​ 引入损失函数(衡量预测值和真实值效果) Loss(k, b)

  • ​ 通过一个优化方法,求损失函数最小值,得到K最优解

  • 在这里插入图片描述

  • 回归的损失函数:

  • 均方误差 (Mean-Square Error, MSE)

  • 在这里插入图片描述

  • 平均绝对误差 (Mean Absolute Error , MAE)

  • 在这里插入图片描述
    在这里插入图片描述

多元线性回归的解析解-正规方程法

在这里插入图片描述

在这里插入图片描述

梯度下降算法
梯度下降算法思想

什么是梯度下降法

• 求解函数极值还有更通用的方法就是梯度下降法。顾名思义:沿着梯度下降的方向求解极小值 • 举个例子:坡度最陡下山法
在这里插入图片描述

  • 输入:初始化位置S;每步距离为a 。输出:从位置S到达山底
  • 步骤1:令初始化位置为山的任意位置S
  • 步骤2:在当前位置环顾四周,如果四周都比S高返回S;否则执行步骤3
  • 步骤3: 在当前位置环顾四周,寻找坡度最陡的方向,令其为x方向
  • 步骤4:沿着x方向往下走,长度为a,到达新的位置S‘
  • 步骤5:在S‘位置环顾四周,如果四周都比S‘高,则返回S‘。否则转到步骤3

小结:通过循环迭代的方法不断更新位置S (相当于不断更新权重参数w)
最终找到最优解 这个方法可用来求损失函数最优解, 比正规方程更通用

梯度下降过程就和下山场景类似
可微分的损失函数,代表着一座山
寻找的函数的最小值,也就是山底

在这里插入图片描述

正规方程和梯度下降算法的对比

在这里插入图片描述

回归评估方法

为什么要进行线性回归模型的评估

我们希望衡量预测值和真实值之间的差距,

会用到MAE、MSE、RMSE多种测评函数进行评价

平均绝对误差

Mean Absolute Error (MAE)
在这里插入图片描述

  • 上面的公式中:n 为样本数量, y 为实际值, y ^ \hat{y} y^ 为预测值
  • MAE 越小模型预测约准确
    Sklearn 中MAE的API
from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_test,y_predict)

均方误差

Mean Squared Error (MSE)
在这里插入图片描述

  • 上面的公式中:n 为样本数量, y 为实际值, y ^ \hat{y} y^ 为预测值
  • MSE 越小模型预测约准确

Sklearn 中MSE的API

from sklearn.metrics import mean_squared_error
mean_squared_error(y_test,y_predict)

均方根误差

Root Mean Squared Error (RMSE)
在这里插入图片描述

  • 上面的公式中:n 为样本数量, y 为实际值, y ^ \hat{y} y^ 为预测值
  • RMSE 越小模型预测约准确

三种指标的比较

我们绘制了一条直线 y = 2x +5 用来拟合 y = 2x + 5 + e. 这些数据点,其中e为噪声
在这里插入图片描述
从上图中我们发现 MAE 和 RMSE 非常接近,都表明模型的误差很低(MAE 或 RMSE 越小,误差越小!)。 但是MAE 和 RMSE 有什么区别?为什么MAE较低?

  • 对比MAE 和 RMSE的公式,RMSE的计算公式中有一个平方项,因此:大的误差将被平方,因此会增加 RMSE 的值

  • 可以得出结论,RMSE 会放大预测误差较大的样本对结果的影响,而 MAE 只是给出了平均误差

  • 由于 RMSE 对误差的 平方和求平均 再开根号,大多数情况下RMSE>MAE

    举例 (1+3)/2 = 2 ( 1 2 + 3 2 ) / 2 = 10 / 2 = 5 = 2.236 \sqrt{(1^2+3^2)/2 }= \sqrt{10/2} = \sqrt{5} = 2.236 (12+32)/2 =10/2 =5 =2.236

我们再看下一个例子

在这里插入图片描述
橙色线与第一张图中的直线一样:y = 2x +5

蓝色的点为: y = y + sin(x)*exp(x/20) + e 其中 exp() 表示指数函数

我们看到对比第一张图,所有的指标都变大了,RMSE 几乎是 MAE 值的两倍,因为它对预测误差较大的点比较敏感

我们是否可以得出结论: RMSE是更好的指标? 某些情况下MAE更有优势,例如:

  • 假设数据中有少数异常点偏差很大,如果此时根据 RMSE 选择线性回归模型,可能会选出过拟合的模型来
  • 在这种情况下,由于数据中的异常点极少,选择具有最低 MAE 的回归模型可能更合适
  • 除此之外,当两个模型计算RMSE时数据量不一致,也不适合在一起比较
    今天先分享到这里
    坚持分享 共同进步

相关文章:

人工智能知识分享第四天-线性回归

线性回归 线性回归介绍 线性回归概念 线性回归(Linear regression)是利用 回归方程(函数) 对 一个或多个自变量(特征值)和因变量(目标值)之间 关系进行建模的一种分析方式。 注意事项: 1 为什么叫线性模型?因为求解的w,都是w的零次幂&am…...

Appium 2.0:移动自动化测试的革新之旅

关注开源优测不迷路 大数据测试过程、策略及挑战 测试框架原理,构建成功的基石 在自动化测试工作之前,你应该知道的10条建议 在自动化测试中,重要的不是工具 在移动应用开发的领域中,Appium 作为一款强大的自动化测试工具&#xf…...

牛客网最新1129道 Java 面试题及答案整理

前言 面试,跳槽,每天都在发生,而对程序员来说"金三银四"更是面试和跳槽的高峰期,跳槽,更是很常见的,对于每个人来说,跳槽的意义也各不相同,可能是一个人更向往一个更大的…...

Swift Combine 学习(六):自定义 Publisher 和 Subscriber

Swift Combine 学习(一):Combine 初印象Swift Combine 学习(二):发布者 PublisherSwift Combine 学习(三):Subscription和 SubscriberSwift Combine 学习(四&…...

Vue-router知识点汇总

import Vue from vue import Router from vue-router Vue.use(Router) import Layout from /layout export const constantRoutes [{path: /forgetpsd,name: forgetPsd,// 命名路由 &#xff0c;跳转<router-link :to"{ name: forgetPsdr, params: { userId: 123 }}&q…...

java AQS

什么是AQS AQS&#xff08;AbstractQueuedSynchronizer&#xff0c;抽象队列同步器&#xff09;是 Java 中并发控制的一种机制&#xff0c;位于 java.util.concurrent.locks 包下&#xff0c;它为构建锁、信号量等同步工具提供了一个框架。AQS 通过 队列 来管理多个线程之间的…...

L25.【LeetCode笔记】 三步问题的四种解法(含矩阵精彩解法!)

目录 1.题目 2.三种常规解法 方法1:递归做 ​编辑 方法2:改用循环做 初写的代码 提交结果 分析 修改后的代码 提交结果 for循环的其他写法 提交结果 方法3:循环数组 提交结果 3.方法4:矩阵 算法 代码实践 1.先计算矩阵n次方 2.后将矩阵n次方嵌入递推式中 提…...

sdut-C语言实验-合数分解

sdut-C语言实验-合数分解 分数 12 全屏浏览 切换布局 作者 马新娟 单位 山东理工大学 合数是指在大于1的整数中&#xff0c;除了1和本身外&#xff0c;还能被其他数整除的数。‌例如&#xff0c;4、6、8、9、10等都是合数。把一个合数分解成若干个质因数乘积的形式(即求质因…...

深入理解 pytest Fixture 方法及其应用

在 Python 自动化测试领域&#xff0c;pytest 是当之无愧的王者。提到 pytest&#xff0c;不得不说它的一大核心功能——Fixture。Fixture 的强大&#xff0c;让复杂的测试流程变得井井有条&#xff0c;让测试代码更加灵活和可复用。 那么&#xff0c;pytest 的 Fixture 究竟是…...

在Linux上获取MS(如Media Server)中的RTP流并录制为双轨PCM格式的WAV文件

在Linux上获取MS(如Media Server)中的RTP流并录制为双轨PCM格式的WAV文件 一、RTP流与WAV文件格式二、实现步骤三、伪代码示例四、C语言示例代码五、关键点说明六、总结在Linux操作系统上,从媒体服务器(如Media Server,简称MS)获取RTP(Real-time Transport Protocol)流…...

Midjourney技术浅析(八):交互与反馈

Midjourney 的用户交互与反馈通过用户输入&#xff08;User Input&#xff09;和用户反馈&#xff08;User Feedback&#xff09;机制&#xff0c;不断优化和改进图像生成的质量和用户满意度。 一、用户交互与反馈模块概述 用户交互与反馈模块的主要功能包括&#xff1a; 1.…...

【Spring MVC 核心机制】核心组件和工作流程解析

在 Web 应用开发中&#xff0c;处理用户请求的逻辑常常会涉及到路径匹配、请求分发、视图渲染等多个环节。Spring MVC 作为一款强大的 Web 框架&#xff0c;将这些复杂的操作高度抽象化&#xff0c;通过组件协作简化了开发者的工作。 无论是处理表单请求、生成动态页面&#x…...

回归问题的等量分层

目录 一、说明 二、什么是分层抽样&#xff1f; 三、那么回归又如何呢&#xff1f; 四、回归分层&#xff08;Stratification on Regression&#xff09; 一、说明 在同一个数据集中&#xff0c;我们可以看成是一个抽样体。然而&#xff0c;我们如果将这个抽样体分成两份&#…...

Unity-Mirror网络框架-从入门到精通之Basic示例

文章目录 前言Basic示例场景元素预制体元素代码逻辑BasicNetManagerPlayer逻辑SyncVars属性Server逻辑Client逻辑 PlayerUI逻辑 最后 前言 在现代游戏开发中&#xff0c;网络功能日益成为提升游戏体验的关键组成部分。Mirror是一个用于Unity的开源网络框架&#xff0c;专为多人…...

CSS 图片廊:网页设计的艺术与技巧

CSS 图片廊&#xff1a;网页设计的艺术与技巧 引言 在网页设计中&#xff0c;图片廊是一个重要的组成部分&#xff0c;它能够以视觉吸引的方式展示图片集合&#xff0c;增强用户的浏览体验。CSS&#xff08;层叠样式表&#xff09;作为网页设计的主要语言之一&#xff0c;提供…...

AI 发展的第一驱动力:人才引领变革

在科技蓬勃发展的当下&#xff0c;AI 成为了时代的焦点&#xff0c;然而其发展并非一帆风顺&#xff0c;究竟什么才是推动 AI 持续前行的关键力量呢&#xff1f; 目录 AI 发展现状剖析 期望与现实的落差 落地困境根源 人才&#xff1a;AI 发展的核心动力​编辑 技术突破的…...

[创业之路-229]:《华为闭环战略管理》-5-平衡记分卡与战略地图

目录 一、平衡记分卡 1. 财务角度&#xff1a; 2. 客户角度&#xff1a; 3. 内部运营角度&#xff1a; 4. 学习与成长角度&#xff1a; 二、BSC战略地图 1、核心内容 2、绘制目的 3、绘制方法 4、注意事项 一、平衡记分卡 平衡记分卡&#xff08;Balanced Scorecard&…...

用uniapp写一个播放视频首页页面代码

效果如下图所示 首页有导航栏&#xff0c;搜索框&#xff0c;和视频列表&#xff0c; 导航栏如下图 搜索框如下图 视频列表如下图 文件目录 视频首页页面代码如下 <template> <view class"video-home"> <!-- 搜索栏 --> <view class…...

【视觉SLAM:八、后端Ⅰ】

视觉SLAM的后端主要解决状态估计问题&#xff0c;它是优化相机轨迹和地图点的过程&#xff0c;从数学上看属于非线性优化问题。后端的目标是结合传感器数据&#xff0c;通过最优估计获取系统的状态&#xff08;包括相机位姿和场景结构&#xff09;&#xff0c;在状态估计过程中…...

PaddleOCROCR关键信息抽取训练过程

步骤1&#xff1a;python版本3.8.20 步骤2&#xff1a;下载代码&#xff0c;安装依赖 git clone https://gitee.com/PaddlePaddle/PaddleOCR.git pip uninstall opencv-python -y # 安装PaddleOCR的依赖 ! pip install -r requirements.txt # 安装关键信息抽取任务的依赖 !…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...