当前位置: 首页 > news >正文

OpenCV-Python实战(11)——边缘检测

一、Sobel 算子

通过 X 梯度核与 Y 梯度核求得图像在,水平与垂直方向的梯度。

img = cv2.Sobel(src=*,ddepth=*,dx=*,dy=*,ksize=*,scale=*,delta=*,borderType=*)

img:目标图像。

src:原始图像。

ddepth:目标图像深度,-1 代表与原始图像深度相同。

dx、dy:x或y 轴方向的求导阶数,可以为:0、1、3 等。0 表示不求导。

ksize:Soble核大小。

scale:导数计算的缩放系数,默认为:1。

delta:常数项,默认为:0。

borderType:边界样式,使用默认即可。

import cv2img = cv2.imread('jin.png')
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
# 取梯度的绝对值
dst_x = cv2.convertScaleAbs(dst_x)
dst_y = cv2.convertScaleAbs(dst_y)dst = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)cv2.imshow('img',img)
cv2.imshow('dst',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

import cv2img = cv2.imread('Lena.png')[::2,::2,:]
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
# 取梯度的绝对值
dst_x = cv2.convertScaleAbs(dst_x)
dst_y = cv2.convertScaleAbs(dst_y)dst = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)cv2.imshow('img',img)
cv2.imshow('Sobel',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

二、Scharr 算子 

img = cv2.Scharr(src=*,ddepth=*,dx=*,dy=*,ksize=*,scale=*,delta=*,borderType=*)

img:目标图像。

src:原始图像。

ddepth:目标图像深度,-1 代表与原始图像深度相同。

dx、dy:x或y 轴方向的求导阶数,可以为:0、1、3 等。0 表示不求导。

ksize:Soble核大小。

scale:导数计算的缩放系数,默认为:1。

delta:常数项,默认为:0。

borderType:边界样式,使用默认即可。

import cv2img = cv2.imread('Lena.png')[::2,::2,:]
cv2.imshow('img',img)
# Sobel 算子
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Sobel = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Sobel',dst_Sobel)# Scharr 算子
dst_x = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Scharr = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Scharr',dst_Scharr)cv2.waitKey(0)
cv2.destroyAllWindows()

三、Laplacian 算子 

img = cv2.Laplacian(src=*,ddepth=*,ksize=*,scale=*,delta=*,borderType=*)

img:目标图像。

src:原始图像。

ddepth:目标图像深度,-1 代表与原始图像深度相同。

ksize:Soble核大小。

scale:导数计算的缩放系数,默认为:1。

delta:常数项,默认为:0。

borderType:边界样式,使用默认即可。

import cv2img = cv2.imread('Lena.png')[::2,::2,:]
cv2.imshow('img',img)
# Sobel 算子
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Sobel = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Sobel',dst_Sobel)# Sobel 算子
dst_x = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Scharr = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Scharr',dst_Scharr)# Laplacian 算子
dst = cv2.Laplacian(src=img,ddepth=cv2.CV_32F,ksize=3)
dst_Laplacian = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
cv2.imshow('Laplacian',dst_Laplacian)cv2.waitKey(0)
cv2.destroyAllWindows()

四、Canny 边缘检测  

img = cv2.Canny(image=*,edges=*,threshold1=*,threshold2=*,apertureSize=*,L2gradient=False)

img:目标图像。

image:原始图像。

edges:边缘数。

threshold1、threshold2:minVal 和 maxVal。

apertureSize:运算符大小。

L2gradient:梯度公式:默认为False,G = \left | G_{x} \right |+\left | G_{y} \right |;如果为Ture则:G = \sqrt{G_{x}^{2}+G_{y}^{2}}

import cv2img = cv2.imread('Lena.png')[::2,::2,:]
cv2.imshow('img',img)
# Sobel 算子
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Sobel = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Sobel',dst_Sobel)# Sobel 算子
dst_x = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Scharr = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Scharr',dst_Scharr)# Laplacian 算子
dst = cv2.Laplacian(src=img,ddepth=cv2.CV_32F,ksize=3)
dst_Laplacian = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
cv2.imshow('Laplacian',dst_Laplacian)# Canny 算子
dst_Canny = cv2.Canny(image=img,threshold1=50,threshold2=100)
cv2.imshow('Canny',dst_Canny)cv2.waitKey(0)
cv2.destroyAllWindows()

 

相关文章:

OpenCV-Python实战(11)——边缘检测

一、Sobel 算子 通过 X 梯度核与 Y 梯度核求得图像在,水平与垂直方向的梯度。 img cv2.Sobel(src*,ddepth*,dx*,dy*,ksize*,scale*,delta*,borderType*)img:目标图像。 src:原始图像。 ddepth:目标图像深度,-1 代表…...

【智行安全】基于Synaptics SL1680的AI疲劳驾驶检测方案

随著车载技术的快速进步,驾驶安全越来越受到重视,而疲劳驾驶是造成交通事故的重要原因之一。传统的驾驶监控技术因精度不足或反应迟缓,无法满足实时监测需求。因此,结合人工智能技术的疲劳驾驶检测系统成为行业新方向,…...

机器学习随机森林回归时间序列预模型中时间滑动窗口作用以及参数设置

一、时间序列模型中时间滑动窗口作用 在时间序列模型中,时间滑动窗口(Sliding Window)起到了至关重要的作用。它是一种常见且有效的数据表示技术,通过将时间序列数据分割成多个固定大小的窗口,来捕捉和分析数据中的模式…...

【Rust自学】7.5. use关键字 Pt.2 :重导入与换国内镜像源教程

喜欢的话别忘了点赞、收藏加关注哦,对接下来的教程有兴趣的可以关注专栏。谢谢喵!(・ω・) 7.5.1. 使用pub use重新导入名称 使用use将路径导入作用域内后。该名称在词作用域内是私有的。 以上一篇文章的代码为例: m…...

自定义luacheck校验规则

安装运行环境 安装环境及源码解析,参考:LuaCheck校验原理解析 自定义校验规则 从代码中可以看出,定义一条规则有以下关键点: 需要定义告警信息:由键值对组成,key为告警编码(不一定为纯数字&…...

python钉钉机器人

上代码 #coding:utf-8 import sys import time import hmac import hashlib import base64 import urllib.parse import requeststimestamp str(round(time.time() * 1000)) secret 你的secret secret_enc secret.encode(utf-8) string_to_sign {}\n{}.format(timestamp, …...

汇编学习笔记

汇编 1. debug指令 -R命令(register) 查看、改变CPU寄存器的内容 r ax 修改AX中的内容 -D命令(display) 查看内存中的内容 -E命令(enter) 改写内存中的内容 -U命令(unassenble反汇编) 将内存中的机器指令翻译成汇编指令 -T命令(trace跟踪) 执行一条机器指令 -A命令…...

混合并行训练框架性能对比

混合并行训练框架性能对比 1. 框架类型 DeepSpeed、Megatron - LM、Colossal - AI、SageMaker、Merak、FasterMoE、Tutel、Whale、Alpa、DAPPLE、Mesh - TensorFlow 2. 可用并行性(Available parallelisms) DNN framework(深度神经网络框架)DP(数据并行,Data Parallelis…...

基于Docker+模拟器的Appium自动化测试(二)

模拟器的设置 打开“夜神模拟器”的系统设置,切换到“手机与网络”页,选中网络设置下的“开启网络连接”和“开启网络桥接模式”复选框,而后选择“静态IP”单选框,在IP地址中输入“192.168.0.105”,网关等内容不再赘述…...

数据结构之线性表之链表(附加一个考研题)

链表的定义 链表的结构: 单链表-初始化 代码实现: 单链表-头插法 代码实现: 这里我给大家分析一下 我们每创建一个新的节点都要插在头节点的后面,我们一定要注意顺序 一定要先让新节点指向头节点指向的下一个节点,…...

etmem

title: 聚焦 Etmem:高效内存管理的新引擎 date: ‘2024-12-31’ category: blog tags: Etmem内存管理性能优化系统资源 sig: storage archives: ‘2024-12’ author:way_back summary: Etmem 是一款专注于内存管理优化的创新工具,通过智能的内存分配、回…...

LangChain4j与Elasticsearch:构建高效的语义嵌入存储

LangChain4j与Elasticsearch:构建高效的语义嵌入存储 一、LangChain4j与Elasticsearch集成概述 1.1 LangChain4j简介 LangChain4j是一个为Java开发者设计的开源库,旨在简化大型语言模型(LLM)在Java应用程序中的集成。它提供了与…...

黄河小浪底水利枢纽泄洪预警广播系统正式上线

24小时站岗、危险自动报警、远程喊话驱离……近日,小浪底水利枢纽和西霞院水利枢纽的泄洪预警广播系统正式上线,通过数字化设施赋能管控水域日常监管,将危险水域各个角落“尽收眼底”,涉水危险行为“无处可藏”。 “前方船只请注意…...

理解生成协同促进?华为诺亚提出ILLUME,15M数据实现多模态理解生成一体化

多模态理解与生成一体化模型,致力于将视觉理解与生成能力融入同一框架,不仅推动了任务协同与泛化能力的突破,更重要的是,它代表着对类人智能(AGI)的一种深层探索。通过在单一模型中统一理解与生成&#xff…...

[文献阅读]ReAct: Synergizing Reasoning and Acting in Language Models

文章目录 摘要Abstract:思考与行为协同化Reason(Chain of thought)ReAct ReAct如何协同推理 响应Action(动作空间)协同推理 结果总结 摘要 ReAct: Synergizing Reasoning and Acting in Language Models [2210.03629] ReAct: Synergizing Reasoning an…...

摄像头监视脚本

摄像头监视脚本,若检测到摄像头画面有变化,保存这一段视频 一、使用方法 1.运行脚本 默认参数Threshold3, Period3, path./recordings python cam.py --threshold30 --period3 --path./recordings 2.参数说明 threshold:摄像头捕获到的画面变化量阈值…...

FreeRTOS的内存管理(选择heap4.c文件的理由)

目录 1. 了解FreeRTOS内存管理 2. 了解内存碎片 3.了解各个heap.c的内存分配方法 1.heap1.c 2.heap2.c 3.heap3.c 4.heap4.c 5.heap5.c 总结: 内存管理是一个系统基本组成部分,FreeRTOS 中大量使用到了内存管理,比如创建任务、信号量…...

SQL-leetcode-183. 从不订购的客户

183. 从不订购的客户 Customers 表: -------------------- | Column Name | Type | -------------------- | id | int | | name | varchar | -------------------- 在 SQL 中,id 是该表的主键。 该表的每一行都表示客户的 ID 和名称。 Orders 表&#…...

苹果系统MacOS下ObjectC建立的App程序访问opencv加载图片程序

前言 苹果系统下使用opencv感觉还是有些不太方便,总是感觉有点受到限制。本博客描述的是在MacOS下建立App程序然后调用opencv显示图片时出现的一些问题并最后解决的一个过程。 一、程序的建立 选择程序的类型: 选择界面模式和编程语言: 其余…...

《代码随想录》Day21打卡!

写在前面:祝大家新年快乐!!!2025年快乐,2024年拜拜~~~ 《代码随想录》二叉树:修剪二叉搜索树 本题的完整题目如下: 本题的完整思路如下: 1.本题使用递归进行求解,所以分…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

Spring Boot面试题精选汇总

🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

Map相关知识

数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...