当前位置: 首页 > news >正文

OpenCV-Python实战(11)——边缘检测

一、Sobel 算子

通过 X 梯度核与 Y 梯度核求得图像在,水平与垂直方向的梯度。

img = cv2.Sobel(src=*,ddepth=*,dx=*,dy=*,ksize=*,scale=*,delta=*,borderType=*)

img:目标图像。

src:原始图像。

ddepth:目标图像深度,-1 代表与原始图像深度相同。

dx、dy:x或y 轴方向的求导阶数,可以为:0、1、3 等。0 表示不求导。

ksize:Soble核大小。

scale:导数计算的缩放系数,默认为:1。

delta:常数项,默认为:0。

borderType:边界样式,使用默认即可。

import cv2img = cv2.imread('jin.png')
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
# 取梯度的绝对值
dst_x = cv2.convertScaleAbs(dst_x)
dst_y = cv2.convertScaleAbs(dst_y)dst = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)cv2.imshow('img',img)
cv2.imshow('dst',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

import cv2img = cv2.imread('Lena.png')[::2,::2,:]
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
# 取梯度的绝对值
dst_x = cv2.convertScaleAbs(dst_x)
dst_y = cv2.convertScaleAbs(dst_y)dst = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)cv2.imshow('img',img)
cv2.imshow('Sobel',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

二、Scharr 算子 

img = cv2.Scharr(src=*,ddepth=*,dx=*,dy=*,ksize=*,scale=*,delta=*,borderType=*)

img:目标图像。

src:原始图像。

ddepth:目标图像深度,-1 代表与原始图像深度相同。

dx、dy:x或y 轴方向的求导阶数,可以为:0、1、3 等。0 表示不求导。

ksize:Soble核大小。

scale:导数计算的缩放系数,默认为:1。

delta:常数项,默认为:0。

borderType:边界样式,使用默认即可。

import cv2img = cv2.imread('Lena.png')[::2,::2,:]
cv2.imshow('img',img)
# Sobel 算子
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Sobel = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Sobel',dst_Sobel)# Scharr 算子
dst_x = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Scharr = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Scharr',dst_Scharr)cv2.waitKey(0)
cv2.destroyAllWindows()

三、Laplacian 算子 

img = cv2.Laplacian(src=*,ddepth=*,ksize=*,scale=*,delta=*,borderType=*)

img:目标图像。

src:原始图像。

ddepth:目标图像深度,-1 代表与原始图像深度相同。

ksize:Soble核大小。

scale:导数计算的缩放系数,默认为:1。

delta:常数项,默认为:0。

borderType:边界样式,使用默认即可。

import cv2img = cv2.imread('Lena.png')[::2,::2,:]
cv2.imshow('img',img)
# Sobel 算子
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Sobel = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Sobel',dst_Sobel)# Sobel 算子
dst_x = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Scharr = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Scharr',dst_Scharr)# Laplacian 算子
dst = cv2.Laplacian(src=img,ddepth=cv2.CV_32F,ksize=3)
dst_Laplacian = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
cv2.imshow('Laplacian',dst_Laplacian)cv2.waitKey(0)
cv2.destroyAllWindows()

四、Canny 边缘检测  

img = cv2.Canny(image=*,edges=*,threshold1=*,threshold2=*,apertureSize=*,L2gradient=False)

img:目标图像。

image:原始图像。

edges:边缘数。

threshold1、threshold2:minVal 和 maxVal。

apertureSize:运算符大小。

L2gradient:梯度公式:默认为False,G = \left | G_{x} \right |+\left | G_{y} \right |;如果为Ture则:G = \sqrt{G_{x}^{2}+G_{y}^{2}}

import cv2img = cv2.imread('Lena.png')[::2,::2,:]
cv2.imshow('img',img)
# Sobel 算子
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Sobel = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Sobel',dst_Sobel)# Sobel 算子
dst_x = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Scharr = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Scharr',dst_Scharr)# Laplacian 算子
dst = cv2.Laplacian(src=img,ddepth=cv2.CV_32F,ksize=3)
dst_Laplacian = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
cv2.imshow('Laplacian',dst_Laplacian)# Canny 算子
dst_Canny = cv2.Canny(image=img,threshold1=50,threshold2=100)
cv2.imshow('Canny',dst_Canny)cv2.waitKey(0)
cv2.destroyAllWindows()

 

相关文章:

OpenCV-Python实战(11)——边缘检测

一、Sobel 算子 通过 X 梯度核与 Y 梯度核求得图像在,水平与垂直方向的梯度。 img cv2.Sobel(src*,ddepth*,dx*,dy*,ksize*,scale*,delta*,borderType*)img:目标图像。 src:原始图像。 ddepth:目标图像深度,-1 代表…...

【智行安全】基于Synaptics SL1680的AI疲劳驾驶检测方案

随著车载技术的快速进步,驾驶安全越来越受到重视,而疲劳驾驶是造成交通事故的重要原因之一。传统的驾驶监控技术因精度不足或反应迟缓,无法满足实时监测需求。因此,结合人工智能技术的疲劳驾驶检测系统成为行业新方向,…...

机器学习随机森林回归时间序列预模型中时间滑动窗口作用以及参数设置

一、时间序列模型中时间滑动窗口作用 在时间序列模型中,时间滑动窗口(Sliding Window)起到了至关重要的作用。它是一种常见且有效的数据表示技术,通过将时间序列数据分割成多个固定大小的窗口,来捕捉和分析数据中的模式…...

【Rust自学】7.5. use关键字 Pt.2 :重导入与换国内镜像源教程

喜欢的话别忘了点赞、收藏加关注哦,对接下来的教程有兴趣的可以关注专栏。谢谢喵!(・ω・) 7.5.1. 使用pub use重新导入名称 使用use将路径导入作用域内后。该名称在词作用域内是私有的。 以上一篇文章的代码为例: m…...

自定义luacheck校验规则

安装运行环境 安装环境及源码解析,参考:LuaCheck校验原理解析 自定义校验规则 从代码中可以看出,定义一条规则有以下关键点: 需要定义告警信息:由键值对组成,key为告警编码(不一定为纯数字&…...

python钉钉机器人

上代码 #coding:utf-8 import sys import time import hmac import hashlib import base64 import urllib.parse import requeststimestamp str(round(time.time() * 1000)) secret 你的secret secret_enc secret.encode(utf-8) string_to_sign {}\n{}.format(timestamp, …...

汇编学习笔记

汇编 1. debug指令 -R命令(register) 查看、改变CPU寄存器的内容 r ax 修改AX中的内容 -D命令(display) 查看内存中的内容 -E命令(enter) 改写内存中的内容 -U命令(unassenble反汇编) 将内存中的机器指令翻译成汇编指令 -T命令(trace跟踪) 执行一条机器指令 -A命令…...

混合并行训练框架性能对比

混合并行训练框架性能对比 1. 框架类型 DeepSpeed、Megatron - LM、Colossal - AI、SageMaker、Merak、FasterMoE、Tutel、Whale、Alpa、DAPPLE、Mesh - TensorFlow 2. 可用并行性(Available parallelisms) DNN framework(深度神经网络框架)DP(数据并行,Data Parallelis…...

基于Docker+模拟器的Appium自动化测试(二)

模拟器的设置 打开“夜神模拟器”的系统设置,切换到“手机与网络”页,选中网络设置下的“开启网络连接”和“开启网络桥接模式”复选框,而后选择“静态IP”单选框,在IP地址中输入“192.168.0.105”,网关等内容不再赘述…...

数据结构之线性表之链表(附加一个考研题)

链表的定义 链表的结构: 单链表-初始化 代码实现: 单链表-头插法 代码实现: 这里我给大家分析一下 我们每创建一个新的节点都要插在头节点的后面,我们一定要注意顺序 一定要先让新节点指向头节点指向的下一个节点,…...

etmem

title: 聚焦 Etmem:高效内存管理的新引擎 date: ‘2024-12-31’ category: blog tags: Etmem内存管理性能优化系统资源 sig: storage archives: ‘2024-12’ author:way_back summary: Etmem 是一款专注于内存管理优化的创新工具,通过智能的内存分配、回…...

LangChain4j与Elasticsearch:构建高效的语义嵌入存储

LangChain4j与Elasticsearch:构建高效的语义嵌入存储 一、LangChain4j与Elasticsearch集成概述 1.1 LangChain4j简介 LangChain4j是一个为Java开发者设计的开源库,旨在简化大型语言模型(LLM)在Java应用程序中的集成。它提供了与…...

黄河小浪底水利枢纽泄洪预警广播系统正式上线

24小时站岗、危险自动报警、远程喊话驱离……近日,小浪底水利枢纽和西霞院水利枢纽的泄洪预警广播系统正式上线,通过数字化设施赋能管控水域日常监管,将危险水域各个角落“尽收眼底”,涉水危险行为“无处可藏”。 “前方船只请注意…...

理解生成协同促进?华为诺亚提出ILLUME,15M数据实现多模态理解生成一体化

多模态理解与生成一体化模型,致力于将视觉理解与生成能力融入同一框架,不仅推动了任务协同与泛化能力的突破,更重要的是,它代表着对类人智能(AGI)的一种深层探索。通过在单一模型中统一理解与生成&#xff…...

[文献阅读]ReAct: Synergizing Reasoning and Acting in Language Models

文章目录 摘要Abstract:思考与行为协同化Reason(Chain of thought)ReAct ReAct如何协同推理 响应Action(动作空间)协同推理 结果总结 摘要 ReAct: Synergizing Reasoning and Acting in Language Models [2210.03629] ReAct: Synergizing Reasoning an…...

摄像头监视脚本

摄像头监视脚本,若检测到摄像头画面有变化,保存这一段视频 一、使用方法 1.运行脚本 默认参数Threshold3, Period3, path./recordings python cam.py --threshold30 --period3 --path./recordings 2.参数说明 threshold:摄像头捕获到的画面变化量阈值…...

FreeRTOS的内存管理(选择heap4.c文件的理由)

目录 1. 了解FreeRTOS内存管理 2. 了解内存碎片 3.了解各个heap.c的内存分配方法 1.heap1.c 2.heap2.c 3.heap3.c 4.heap4.c 5.heap5.c 总结: 内存管理是一个系统基本组成部分,FreeRTOS 中大量使用到了内存管理,比如创建任务、信号量…...

SQL-leetcode-183. 从不订购的客户

183. 从不订购的客户 Customers 表: -------------------- | Column Name | Type | -------------------- | id | int | | name | varchar | -------------------- 在 SQL 中,id 是该表的主键。 该表的每一行都表示客户的 ID 和名称。 Orders 表&#…...

苹果系统MacOS下ObjectC建立的App程序访问opencv加载图片程序

前言 苹果系统下使用opencv感觉还是有些不太方便,总是感觉有点受到限制。本博客描述的是在MacOS下建立App程序然后调用opencv显示图片时出现的一些问题并最后解决的一个过程。 一、程序的建立 选择程序的类型: 选择界面模式和编程语言: 其余…...

《代码随想录》Day21打卡!

写在前面:祝大家新年快乐!!!2025年快乐,2024年拜拜~~~ 《代码随想录》二叉树:修剪二叉搜索树 本题的完整题目如下: 本题的完整思路如下: 1.本题使用递归进行求解,所以分…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、👨‍🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨‍&#x1f…...