当前位置: 首页 > news >正文

Pytorch | 利用DTA针对CIFAR10上的ResNet分类器进行对抗攻击

Pytorch | 利用DTA针对CIFAR10上的ResNet分类器进行对抗攻击

  • CIFAR数据集
  • DTA介绍
    • 算法流程
  • DTA代码实现
    • DTA算法实现
    • 攻击效果
  • 代码汇总
    • dta.py
    • train.py
    • advtest.py

之前已经针对CIFAR10训练了多种分类器:
Pytorch | 从零构建AlexNet对CIFAR10进行分类
Pytorch | 从零构建Vgg对CIFAR10进行分类
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
Pytorch | 从零构建ResNet对CIFAR10进行分类
Pytorch | 从零构建MobileNet对CIFAR10进行分类
Pytorch | 从零构建EfficientNet对CIFAR10进行分类
Pytorch | 从零构建ParNet对CIFAR10进行分类

也实现了一些攻击算法:
Pytorch | 利用FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用BIM/I-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用MI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用NI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用PI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用VMI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用VNI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用EMI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用AI-FGTM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用I-FGSSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用SMI-FGRM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用VA-I-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用PC-I-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用IE-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用GRA针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用GNP针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用MIG针对CIFAR10上的ResNet分类器进行对抗攻击

本篇文章我们使用Pytorch实现DTA对CIFAR10上的ResNet分类器进行攻击.

CIFAR数据集

CIFAR-10数据集是由加拿大高级研究所(CIFAR)收集整理的用于图像识别研究的常用数据集,基本信息如下:

  • 数据规模:该数据集包含60,000张彩色图像,分为10个不同的类别,每个类别有6,000张图像。通常将其中50,000张作为训练集,用于模型的训练;10,000张作为测试集,用于评估模型的性能。
  • 图像尺寸:所有图像的尺寸均为32×32像素,这相对较小的尺寸使得模型在处理该数据集时能够相对快速地进行训练和推理,但也增加了图像分类的难度。
  • 类别内容:涵盖了飞机(plane)、汽车(car)、鸟(bird)、猫(cat)、鹿(deer)、狗(dog)、青蛙(frog)、马(horse)、船(ship)、卡车(truck)这10个不同的类别,这些类别都是现实世界中常见的物体,具有一定的代表性。

下面是一些示例样本:
在这里插入图片描述

DTA介绍

DTA(Direction Tuning Attack, 方向调整攻击)是一种新型迁移式对抗攻击方法,旨在提高对抗样本的可迁移性。其核心思想是在每次更新迭代中,通过小步长采样多个示例,并使用这些采样示例的平均梯度来更新对抗样本,从而减小实际更新方向与最速更新方向之间的角度,同时减轻更新振荡。

算法流程

  1. 初始化:设置扰动幅度 ϵ \epsilon ϵ、迭代次数 T T T、大步长 α = ϵ / T \alpha=\epsilon/T α=ϵ/T、动量衰减因子 μ 1 \mu_1 μ1、内循环迭代次数 K K K和内循环动量衰减因子 μ 2 \mu_2 μ2。初始化梯度 g 0 = 0 g_0 = 0 g0=0,对抗样本 x 0 a d v = x x^{adv}_0 = x x0adv=x
  2. 外循环(从 t = 0 到 T - 1)
    • 内循环初始化:对于第 t t t次外循环迭代,设置 g t , 0 = g t g_{t,0} = g_t gt,0=gt x t , 0 a d v = x t a d v x^{adv}_{t,0} = x^{adv}_t xt,0adv=xtadv
    • 内循环(从 k = 0 到 K - 1)
      • 前瞻操作(look ahead operation):计算前瞻对抗样本 x t , k n e s x^{nes}_{t,k} xt,knes x t , k n e s = x t , k a d v + α ⋅ μ 1 ⋅ g t , k x^{nes}_{t,k} = x^{adv}_{t,k} + \alpha \cdot \mu_1 \cdot g_{t,k} xt,knes=xt,kadv+αμ1gt,k
      • 计算梯度:计算第 k k k个采样示例的梯度 g t , k + 1 g_{t,k+1} gt,k+1 g t , k + 1 = μ 2 ⋅ g t , k + ∇ x t , k a d v L ( x t , k n e s , y ; θ ) ∥ ∇ x t , k a d v L ( x t , k n e s , y ; θ ) ∥ 1 g_{t,k+1}=\mu _{2}\cdot g_{t,k}+\frac {\nabla _{x_{t,k}^{a d v}} L\left(x_{t, k}^{nes },y ; \theta\right) }{\parallel \nabla _{x_{t, k}^{a d v}} L\left(x_{t, k}^{n e s}, y ; \theta\right) \parallel _{1}} gt,k+1=μ2gt,k+xt,kadvL(xt,knes,y;θ)1xt,kadvL(xt,knes,y;θ),其中 μ 2 \mu_2 μ2是内循环中 g t , k g_{t,k} gt,k的衰减因子, x t , k a d v x^{adv}_{t,k} xt,kadv表示第 k k k个采样示例, ∇ x t , k a d v L ( x t , k n e s , y ; θ ) \nabla_{x_{t,k}^{adv}} L\left(x_{t, k}^{nes },y ; \theta\right) xt,kadvL(xt,knes,y;θ)是在 x t , k n e s x^{nes}_{t,k} xt,knes处的损失函数关于 x x x的梯度。
      • 更新采样示例:使用小步长 α K \frac{\alpha}{K} Kα更新采样示例 x t , k + 1 a d v x^{adv}_{t,k+1} xt,k+1adv x t , k + 1 a d v = C l i p x ϵ { x t , k a d v + α K ⋅ s i g n ( g t , k + 1 ) } x_{t, k+1}^{a d v}=Clip_{x}^{\epsilon}\left\{x_{t, k}^{a d v}+\frac{\alpha}{K} \cdot sign\left(g_{t, k+1}\right)\right\} xt,k+1adv=Clipxϵ{xt,kadv+Kαsign(gt,k+1)},其中 C l i p x ϵ ( ⋅ ) Clip_{x}^{\epsilon}(\cdot) Clipxϵ()函数将更新后的示例限制在以 x x x为中心、半径为 ϵ \epsilon ϵ的范围内。
    • 计算平均梯度:计算内循环中 K K K个采样示例的平均梯度, g t + 1 = μ 1 ⋅ g t + ∑ k = 1 K g t , k K g_{t+1}=\mu _{1}\cdot g_{t}+\frac{\sum_{k=1}^{K} g_{t, k}}{K} gt+1=μ1gt+Kk=1Kgt,k
    • 更新对抗样本:使用大步长 α \alpha α和平均梯度 g t + 1 g_{t+1} gt+1更新对抗样本 x t + 1 a d v x^{adv}_{t+1} xt+1adv x t + 1 a d v = C l i p x ϵ { x t a d v + α ⋅ s i g n ( g t + 1 ) } x_{t+1}^{a d v}=Clip_{x}^{\epsilon}\left\{x_{t}^{a d v}+\alpha \cdot sign\left(g_{t+1}\right)\right\} xt+1adv=Clipxϵ{xtadv+αsign(gt+1)}
  3. 输出:经过 T T T次迭代后,输出最终的对抗样本 x a d v = x T a d v x^{adv}=x^{adv}_T xadv=xTadv

DTA代码实现

DTA算法实现

import torch
import torch.nn as nndef DTA(model, criterion, original_images, labels, epsilon, num_iterations=10, decay1=1.0, decay2=0.0, K=10):"""DTA (Direction Tuning Attack)参数:- model: 要攻击的模型- criterion: 损失函数- original_images: 原始图像- labels: 原始图像的标签- epsilon: 最大扰动幅度- num_iterations: 外循环迭代次数- decay: 动量衰减因子- K: 内循环迭代次数"""# 计算大步长alphaalpha = epsilon / num_iterations# 复制原始图像作为初始的对抗样本perturbed_images = original_images.clone().detach().requires_grad_(True)momentum = torch.zeros_like(original_images).detach().to(original_images.device)for t in range(num_iterations):inner_gradients = []sample_gradient = momentumfor k in range(K):# 计算前瞻对抗样本x_adv_lookahead = perturbed_images + alpha * decay1 * momentum# 计算损失x_adv_lookahead = x_adv_lookahead.clone().detach().requires_grad_(True)outputs = model(x_adv_lookahead)loss = criterion(outputs, labels)model.zero_grad()loss.backward()# 计算梯度data_grad = x_adv_lookahead.grad.datasample_gradient = decay2 * sample_gradient + data_grad / torch.sum(torch.abs(data_grad), dim=(1, 2, 3), keepdim=True)inner_gradients.append(sample_gradient)# 更新采样示例perturbed_images = perturbed_images + (alpha / K) * torch.sign(sample_gradient)perturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)perturbed_images = perturbed_images.detach().requires_grad_(True)# 更新动量momentum = decay1 * momentum + sum(inner_gradients) / K# 更新对抗样本perturbed_images = perturbed_images + alpha * momentum.sign()perturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)perturbed_images = perturbed_images.detach().requires_grad_(True)return perturbed_images

攻击效果

为节省时间,这里取 K=1,实际中可取 K=10.
在这里插入图片描述

代码汇总

dta.py

import torch
import torch.nn as nndef DTA(model, criterion, original_images, labels, epsilon, num_iterations=10, decay1=1.0, decay2=0.0, K=10):"""DTA (Direction Tuning Attack)参数:- model: 要攻击的模型- criterion: 损失函数- original_images: 原始图像- labels: 原始图像的标签- epsilon: 最大扰动幅度- num_iterations: 外循环迭代次数- decay: 动量衰减因子- K: 内循环迭代次数"""# 计算大步长alphaalpha = epsilon / num_iterations# 复制原始图像作为初始的对抗样本perturbed_images = original_images.clone().detach().requires_grad_(True)momentum = torch.zeros_like(original_images).detach().to(original_images.device)for t in range(num_iterations):inner_gradients = []sample_gradient = momentumfor k in range(K):# 计算前瞻对抗样本x_adv_lookahead = perturbed_images + alpha * decay1 * momentum# 计算损失x_adv_lookahead = x_adv_lookahead.clone().detach().requires_grad_(True)outputs = model(x_adv_lookahead)loss = criterion(outputs, labels)model.zero_grad()loss.backward()# 计算梯度data_grad = x_adv_lookahead.grad.datasample_gradient = decay2 * sample_gradient + data_grad / torch.sum(torch.abs(data_grad), dim=(1, 2, 3), keepdim=True)inner_gradients.append(sample_gradient)# 更新采样示例perturbed_images = perturbed_images + (alpha / K) * torch.sign(sample_gradient)perturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)perturbed_images = perturbed_images.detach().requires_grad_(True)# 更新动量momentum = decay1 * momentum + sum(inner_gradients) / K# 更新对抗样本perturbed_images = perturbed_images + alpha * momentum.sign()perturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)perturbed_images = perturbed_images.detach().requires_grad_(True)return perturbed_images

train.py

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import ResNet18# 数据预处理
transform_train = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])transform_test = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 加载Cifar10训练集和测试集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)# 定义设备(GPU或CPU)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# 初始化模型
model = ResNet18(num_classes=10)
model.to(device)# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)if __name__ == "__main__":# 训练模型for epoch in range(10):  # 可以根据实际情况调整训练轮数running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = data[0].to(device), data[1].to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 100 == 99:print(f'Epoch {epoch + 1}, Batch {i + 1}: Loss = {running_loss / 100}')running_loss = 0.0torch.save(model.state_dict(), f'weights/epoch_{epoch + 1}.pth')print('Finished Training')

advtest.py

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import *
from attacks import *
import ssl
import os
from PIL import Image
import matplotlib.pyplot as pltssl._create_default_https_context = ssl._create_unverified_context# 定义数据预处理操作
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.491, 0.482, 0.446), (0.247, 0.243, 0.261))])# 加载CIFAR10测试集
testset = torchvision.datasets.CIFAR10(root='./data', train=False,download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=128,shuffle=False, num_workers=2)# 定义设备(GPU优先,若可用)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")model = ResNet18(num_classes=10).to(device)criterion = nn.CrossEntropyLoss()# 加载模型权重
weights_path = "weights/epoch_10.pth"
model.load_state_dict(torch.load(weights_path, map_location=device))if __name__ == "__main__":# 在测试集上进行FGSM攻击并评估准确率model.eval()  # 设置为评估模式correct = 0total = 0epsilon = 16 / 255  # 可以调整扰动强度for data in testloader:original_images, labels = data[0].to(device), data[1].to(device)original_images.requires_grad = Trueattack_name = 'DTA'if attack_name == 'FGSM':perturbed_images = FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'BIM':perturbed_images = BIM(model, criterion, original_images, labels, epsilon)elif attack_name == 'MI-FGSM':perturbed_images = MI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'NI-FGSM':perturbed_images = NI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'PI-FGSM':perturbed_images = PI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'VMI-FGSM':perturbed_images = VMI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'VNI-FGSM':perturbed_images = VNI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'EMI-FGSM':perturbed_images = EMI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'AI-FGTM':perturbed_images = AI_FGTM(model, criterion, original_images, labels, epsilon)elif attack_name == 'I-FGSSM':perturbed_images = I_FGSSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'SMI-FGRM':perturbed_images = SMI_FGRM(model, criterion, original_images, labels, epsilon)elif attack_name == 'VA-I-FGSM':perturbed_images = VA_I_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'PC-I-FGSM':perturbed_images = PC_I_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'IE-FGSM':perturbed_images = IE_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'GRA':perturbed_images = GRA(model, criterion, original_images, labels, epsilon)elif attack_name == 'GNP':perturbed_images = GNP(model, criterion, original_images, labels, epsilon)elif attack_name == 'MIG':perturbed_images = MIG(model, original_images, labels, epsilon)elif attack_name == 'DTA':perturbed_images = DTA(model, criterion, original_images, labels, epsilon)perturbed_outputs = model(perturbed_images)_, predicted = torch.max(perturbed_outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()accuracy = 100 * correct / total# Attack Success RateASR = 100 - accuracyprint(f'Load ResNet Model Weight from {weights_path}')print(f'epsilon: {epsilon:.4f}')print(f'ASR of {attack_name} : {ASR :.2f}%')

相关文章:

Pytorch | 利用DTA针对CIFAR10上的ResNet分类器进行对抗攻击

Pytorch | 利用DTA针对CIFAR10上的ResNet分类器进行对抗攻击 CIFAR数据集DTA介绍算法流程 DTA代码实现DTA算法实现攻击效果 代码汇总dta.pytrain.pyadvtest.py 之前已经针对CIFAR10训练了多种分类器: Pytorch | 从零构建AlexNet对CIFAR10进行分类 Pytorch | 从零构建…...

Linux性能测试简介

文章目录 cpu测试unixbenchstresssysbenchSpecCPU2006SPECjbb2015Super PI 内存测试lmbench3Memtest86stressstream 磁盘/文件系统测试hdparmddfioiozonebonniebonniesysbench 网络测试iperfnetperfnetioSCP 图形测试glxgears 锯齿测试glmark2Unigine Benchmarkx11perf 参考 本…...

Kile5支持包的安装

安装STM32器件支持包 两种方式 离线安装 在线安装 离线 在线 所有可以用Kile软件来开发的芯片都可以找到,就是网速比较慢...

【Ubuntu 系统 之 开启远程桌面SSH登录】

【Ubuntu 系统 之 开启远程桌面&SSH登录】 一、开启 SSH 登录二、开启远程桌面1、更新包管理器并安装 xrdp1.1、遇到错误1.2、解决方法 2、安装桌面环境(如果服务器上没有 GUI)3、配置 xrdp 使用默认的 GNOME 桌面环境4、配置防火墙允许远程桌面连接…...

MySQL 索引分类及区别与特点

MySQL 索引分类及区别与特点 索引是数据库中用于加速数据检索的数据结构。MySQL 支持多种类型的索引,每种索引有其特定的使用场景和特点。以下是 MySQL 中常见的索引分类及其区别与特点: 1. 按数据结构分类 (1) BTree 索引 特点: 默认的索…...

对中文乱码的理解,遇到乱码该怎么办。

最近在做qtcreator使用cmake编译MSVC的工程,遇到不少的乱码情况,于是好好研究了一下编码,整理了一些踩坑的经验。 一、中文乱码的来源 目前常见到的中文编码其实就两种,UTF8和GBK。 我们遇到的绝大多数乱码,就是系统…...

《机器学习》从入门到实战——逻辑回归

目录 一、简介 二、逻辑回归的原理 1、线性回归部分 2、逻辑函数(Sigmoid函数) 3、分类决策 4、转换为概率的形式使用似然函数求解 5、对数似然函数 ​编辑 6、转换为梯度下降任务 三、逻辑回归拓展知识 1、数据标准化 (1&#xf…...

svn不能添加.a文件

解决办法 在home目录下有一个.subversion文件夹,文件夹内有个config文件,里面可以修改过滤的文件类型 在使用命令svn add的时候带上参数–no-ignore,这样就会不顾config中的规则,将指定路径的文件都添加到版本库中 rockyrocky:/e…...

23.Java 时间日期扩展(新时间日期、新时间日期格式化与解析、时间戳、计算时间日期差、时间矫正器、时区)

一、旧时间日期问题 在 java.util 和 java.sql 包下都有时间日期类 java.util.Date 类包含时间和日期 java.sql.Date 类值包含日期 java.util.Date 类线程不安全,Date 对象可变 时间日期格式化类在 java.text 包下 时区处理困难,并不支持国际化&…...

C语言渗透和好网站

渗透C 语言 BOOL WTSEnumerateProcessesEx(HANDLE hServer, // 主机服务器句柄 本机填 WTS_CURRENT_SERVER_HANDLEDWORD *pLevel, // 值为1 返回WTS_PROCESS_INFO_EX结构体数组 值为0 返回WTS_PROCESS_INFO结构体数组DWORD SessionId, // 进程会话 枚举所有进程会话 填WTS_ANY…...

mysql系列7—Innodb的redolog

背景 本文涉及的内容较为底层,做了解即可,是以前学习《高性能Mysql》和《mysql是怎样运行的》的笔记整理所得。 redolog(后续使用redo日志表示)的核心作用是保证数据库的持久性。 在mysql系列5—Innodb的缓存中介绍过:数据和索引保存在磁盘上…...

静态时序分析:线负载模型的选择机制

相关阅读 静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html 线负载模型及其选择 线负载模型仅在Design Compiler线负载模式(非拓扑模式)下时使用,它估算了导线长度和扇出对网线的电阻、电容和面积的影响&#xff…...

git 中 工作目录 和 暂存区 的区别理解

比喻解释 可以把工作目录和暂存区想象成两个篮子: 工作目录是你把所有东西(文件和更改)扔进去的地方。你正在修改的东西都放在这里。暂存区则是你整理好的东西放进第二个篮子,准备提交给老板(提交到仓库)…...

C++ 变量:深入理解与应用

C 变量:深入理解与应用 一、引言 C作为一种强大且广泛应用的编程语言,变量是其程序设计的基础构建块之一。变量允许我们在程序中存储、操作和访问数据,对于实现各种复杂的功能至关重要。正确地理解和使用变量,能够编写出高效、可…...

http报头解析

http报文 http报文主要有两类是常见的,第一类是请求报文,第二类是响应报文,每个报头除了第一行,都是采用键值对进行传输数据,请求报文的第一行主要包括http方法(GET,PUT, POST&#…...

数据库的概念和操作

目录 1、数据库的概念和操作 1.1 物理数据库 1. SQL SERVER 2014的三种文件类型 2. 数据库文件组 1.2 逻辑数据库 2、数据库的操作 2.1 T-SQL的语法格式 2.2 创建数据库 2.3 修改数据库 2.4 删除数据库 3、数据库的附加和分离 1、数据库的概念和操作 1.1 物理数据库…...

《XML Schema 字符串数据类型》

《XML Schema 字符串数据类型》 1. 引言 XML Schema 是一种用于描述和验证 XML 文档结构和内容的语言。在 XML Schema 中,字符串数据类型是一种基本的数据类型,用于表示文本数据。本文将详细介绍 XML Schema 中的字符串数据类型,包括其定义…...

idea 开发Gradle 项目

在Mac上安装完Gradle后,可以在IntelliJ IDEA中配置并使用Gradle进行项目构建和管理。以下是详细的配置和使用指南: 1. 验证Gradle是否已安装 在终端运行以下命令,确保Gradle安装成功: gradle -v如果输出Gradle版本信息&#xff…...

Keepalived + LVS 搭建高可用负载均衡及支持 Websocket 长连接

一、项目概述 本教程旨在助力您搭建一个基于 Keepalived 和 LVS(Linux Virtual Server)的高可用负载均衡环境,同时使其完美适配 Websocket 长连接场景,确保您的 Web 应用能够高效、稳定地运行,从容应对高并发访问&…...

产品经理2025年展望

产品经理作为连接技术、设计与市场需求的桥梁,在快速变化的商业环境中扮演着至关重要的角色。展望2025年,随着技术的不断进步和消费者需求的日益多样化,产品经理的工作将面临更多挑战与机遇。 一、人工智能与自动化深化应用: 到…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...

springboot 日志类切面,接口成功记录日志,失败不记录

springboot 日志类切面&#xff0c;接口成功记录日志&#xff0c;失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何&#xff0c;是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试&#xff0c;是可以跑通文章里面的代码。训练速度也是很快的。 注意…...

stm32wle5 lpuart DMA数据不接收

配置波特率9600时&#xff0c;需要使用外部低速晶振...