当前位置: 首页 > news >正文

NLP 复习大纲

CH3

  • 激活函数意义
    增强网络表达能力,引入非线性因素
    连续可导的非线性函数
    尽可能简单
    导数的值域要在合适的范围内

  • 为什么会发生梯度消失
    误差传播的迭代公式为:
    其中需要用到激活函数的导数,而激活函数的导数值小于1时,误差经过每一层传递都会不断衰减,当网络很深的时候,梯度会消失。

  • 损失函数的种类
    绝对值损失函数
    交叉熵损失函数
    平方损失函数

  • 梯度下降方法
    梯度下降:全批次
    随机梯度下降:每一次随机选择一个数据计算梯度
    mini-batch:结合两者
    异同:计算效率,更新频率,样本划分,目标

  • 如何解决梯度消失和过拟合
    选择合适的激活函数,用复杂的们结构代替激活函数,残差结构
    正则化解决过拟合

  • CNN
    由卷积层、子采样层、全连接层交叉堆叠而成

  • 与DNNqubie

  • DNN训练方法
    BP

  • RNN的训练方法
    BPTT

  • BPTT和BP的区别
    BPTT损失函数定义为每一个时刻的损失之和,它会在每一个时间步长内叠加所有对应的权重梯度

  • GNN如何解决邻接节点个数不确定
    将目标节点的特征更新为其自身特征和邻居特征的组合。

  • GNN卷积步骤:1.Aggregation 2.Transformation
    在最后一层(K层)得到每个结点的表示后,可以根据任务将其代入任何损失函数,然后用梯度下降法训练参数

  • GNN训练方法
    卷积,然后在最后一层得到每个节点的表示后,根据任务将其带入任何损失函数,邻接节点特征聚合 ,transformation引入非线性

相较于DNN,CNN,RNN有什么优点?

  • DNN,CNN输入输出定长,RNN处理变长问题效率更高
  • DNN,CNN无法处理时序相关的问题

CNN各层的作用是什么

  • 卷积层:通过卷积操作减少参数
  • 池化层:通过采样减少网络规模
  • 全连接层:将池化层的单元平化

GNN和CNN的区别

  • 卷积思想
    • 核心相同:两者都利用卷积操作从输入中提取特征。
    • 共享权重:CNN在特定区域共享卷积核参数,GNN在邻域节点中共享权重,减少参数量。
    • 特征聚合:两者都通过聚合局部特征(局部连接)生成全局信息。
  • 目标
    • 两者均试图降低模型复杂度,同时保留尽可能多的关键信息。
  • 训练方法
    • 均通过梯度下降法优化损失函数(如交叉熵损失)。
    • 使用类似的反向传播(BP)算法来更新权重。

LSTM VS GRU
门结构不同
LSTM:输入门+遗忘门+输出门
GRU:更新门+重置门
模型参数不同
GRU比LSTM更加简单,参数更少
对memory 的控制不同
LSTM: 用output gate 控制,传输给下一个unit。
GRU:直接传递给下一个unit,不做任何控制。

相关文章:

NLP 复习大纲

CH3 激活函数意义 增强网络表达能力,引入非线性因素 连续可导的非线性函数 尽可能简单 导数的值域要在合适的范围内 为什么会发生梯度消失 误差传播的迭代公式为: 其中需要用到激活函数的导数,而激活函数的导数值小于1时,误差经过…...

Kafka的rebalance机制

1、什么是 rebalance 机制 重平衡(rebalance)机制规定了如何让消费者组下的所有消费者来分配 topic 中的每一个分区。 2、rebalance 机制的触发条件是什么 (1)消费者组内成员变更 成员增加:当有新的消费者加入到消费…...

【git】git stash相关指令

目录 git stashgit stash save “”git stash list: 获取stash列表git stash pop:恢复最近一次stash缓存git stash apply stash{index}: 恢复指定缓存在这里插入图片描述git stash drop stash{1}:删除指定缓存 git stash clear :删除stash gi…...

BLIP论文笔记

论文地址 BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation 论文思想 其实Clip就相当于只用了ITC...

设计模式-创建型设计模式总结

创建型设计模式(Creational Design Patterns)是 设计模式 中的一类,专注于如何实例化对象或类。它们提供了一些优雅的方式来创建对象,允许程序在对象创建过程中更灵活地进行管理,从而提高系统的扩展性和维护性。 创建…...

Java-多种方法实现多线程卖票

Java多线程卖票是一个经典的并发编程问题,它展示了如何在多个线程之间安全地共享和修改资 源。以下是几种实现方式: 使用synchronized关键字: 使用synchronized修饰符来同步方法或代码块,确保同一时刻只有一个线程可以访问临界区(即操 作共享资源的代码)。 使用Reen…...

嵌入式系统开发笔记112:通过有人云测试MQTT

文章目录 前言一、MQTT1、基本原理(1)发布 / 订阅模式:(2)主题系统:2、特点(1)轻量级:(2)可靠性:(3)低功耗:3、消息主题的命名(1)使用正斜杠(/)分隔层级:(2)区分大小写:(3)避免特殊字符:4、客户端ID(1)作用a、连接标识:b、消息路由与管理:c、会话…...

C++ Latch 和 Barrier: 新手指南

文章目录 什么是 Latch 和 Barrier?为什么要使用 Latch 和 Barrier?代码示例示例 1: 使用 std::latch示例 2: 多阶段任务示例 3: 使用 std::barrier 何时使用?优势使用时需要注意的事项参考链接源码链接 随着并发和并行编程的重要性日益增加, 理解像 Latch 和 Barrier 这样的…...

【Cocos TypeScript 零基础 4.1】

目录 背景滚动 背景滚动 创建一个 空节点 背景丟进去 ( 复制一个,再丢一次都行) 新建TS脚本 并绑定到 空节点 上 再对TS脚本进行编辑 export class TS2bg extends Component {property (Node) // 通过属性面板去赋值bg1:Node nullproperty (Node) bg2:Node nullprope…...

区块链安全常见的攻击合约和简单复现,附带详细分析——不安全调用漏洞 (Unsafe Call Vulnerability)【6】

区块链安全常见的攻击分析——不安全调用漏洞 Unsafe Call Vulnerability 1.1 漏洞合约1.2 漏洞分析1.3 攻击步骤分析1.4 攻击合约 Name: 不安全调用漏洞 (Unsafe Call Vulnerability) 重点: 在 TokenWhale 合约的 approveAndCallcode 函数中,漏洞允许任…...

鸿蒙应用开发搬砖经验之—使用ArkWeb要开启文档对象模型存储接口权限(DOM Storage API权限)

如题,该属性/功能默认是没有开启的!!!! 所以需要我们手动开启,否侧加载的H5 SPA大概率功能不正常,因为现在大多数的H5应用都用遇到对象模型存储的功能,对应的接口是 不开启一般会…...

本机实现Llama 7B推理及部署

本机实现Llama 7B推理及部署 使用llamafile在Windows系统部署 部署步骤:首先从https://www.modelscope.cn/api/v1/models/bingal/llamafile-models/repo?Revision=master&FilePath=llamafile-0.6.2.win.zip下载llamafile并解压得到llamafile.exe文件, 再从https://www.…...

Spring Boot 依赖配置分离多种打包方式

生产上发布 Spring Boot 项目时,但凡代码有一丁点改动,就得把整个项目包括依赖重新打包上传部署,这样的包很大,影响效率 为解决这个问题,可以把依赖(pom中的依赖jar包)、配置文件(resources 下的 applacation.yml 等文件)从项目主体里剥离出来,后续部署时,只需发布代…...

华为的数字化转型框架和数字化转型成熟度评估方法

2016年,华为公司数字化转型变革规划汇报通过,一系列的变革项目由变革指导委员会(Executive Steering Committee,ESC)完成立项。8年多来,华为数字化转型工作初步取得了一些成果,比如: 实现“销售收入翻番,但…...

图像转换 VM与其他格式互转

目录 前言 图像转换 1.相机取流转VM对应类型图像格式 1.1 相机采图转流程输入和Group输入(ImageBaseData_V2) 1.2 相机采图转图像源SDK输入(ImageBaseData) 1.3 相机采图转模块输入(InputImageData) 1.4 相机采图转算子输入(CmvdImage) 2.Bitmap取图与VM对应图像格式互…...

气象白化的三种方法

【总结】cnmaps、maskout、salem的正确打开方式 - 知乎https://zhuanlan.zhihu.com/p/636252854总结了三种方式,比较还是安装了Salem库,第一次import联网下载也很顺利!!!...

Azkaban3.84集群安装部署

基础环境配置 上传安装包并解压 tar -zxvf azkaban-exec-server-3.84.4.tar.gz -C /ddhome/bin/ tar -zxvf azkaban-web-server-3.84.4.tar.gz -C /ddhome/bin/ tar -zxvf azkaban-db-3.84.4.tar.gz -C /ddhome/bin/mv azkaban-exec-server-3.84.4 azkaban-exec mv azkaban-w…...

XIAO Esp32S3制作网络摄像头——1音频获取

1、功能介绍 本文主要是基于XIAO Esp32S3(Sense)做的一款网络摄像头,主要包含以下功能 1 音频获取/保存 2 视频获取/视频保存 3 行人检测/火焰检测/行人追踪(告警) 4 指定区域 5 摄像头旋转 。。。 本文主要实现第一步,音频获取,后续会陆续实现后面的功能,敬请期…...

【Axios使用手册】如何使用axios向后端发送请求并进行数据交互

axios 是一个基于 Promise 的 HTTP 客户端,用于浏览器和 Node.js。它支持请求和响应拦截、取消请求、自动转换 JSON 数据等功能,非常适合在现代 JavaScript 应用中进行网络请求。以下是对 axios 的详细讲解,包括安装、基本用法、高级功能等。…...

groupby 操作的不同参数

groupby 是数据分析中一个非常强大的操作,可以根据指定的规则将数据拆分成多个组,并对每个组进行聚合、转换或过滤等操作。我们逐个解释这些参数的作用,并通过数值举例进行说明。 参数解释 by:分组依据 by 参数指定了分组的依据&…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...

基于Springboot+Vue的办公管理系统

角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...