当前位置: 首页 > news >正文

Chapter4.2:Normalizing activations with layer normalization

文章目录

  • 4 Implementing a GPT model from Scratch To Generate Text
    • 4.2 Normalizing activations with layer normalization

4 Implementing a GPT model from Scratch To Generate Text

4.2 Normalizing activations with layer normalization

通过层归一化(Layer Normalization)对激活值进行归一化处理。

  • Layer normalization (LayerNorm):将激活值中心化到均值为 0,归一化方差为 1,稳定训练并加速收敛。

    应用位置

    1. transformer block 中的 multi-head attention module 前后。

    2. 最终输出层之前。

    下图提供了LayerNormalization的直观概述

    从一个小例子看看LayerNormalization发生了什么

    torch.manual_seed(123)batch_example = torch.randn(2, 5) layer = nn.Sequential(nn.Linear(5, 6), nn.ReLU())
    out = layer(batch_example)
    print(out)
    print(out.shape)# 计算均值和方差
    mean = out.mean(dim=-1, keepdim=True)
    var = out.var(dim=-1, keepdim=True)print("Mean:\n", mean)
    print("Variance:\n", var)out_norm = (out - mean) / torch.sqrt(var)
    print("Normalized layer outputs:\n", out_norm)mean = out_norm.mean(dim=-1, keepdim=True)
    var = out_norm.var(dim=-1, keepdim=True)
    print("Mean:\n", mean)
    print("Variance:\n", var)"""输出"""
    tensor([[0.2260, 0.3470, 0.0000, 0.2216, 0.0000, 0.0000],[0.2133, 0.2394, 0.0000, 0.5198, 0.3297, 0.0000]],grad_fn=<ReluBackward0>)torch.Size([2, 6])Mean:tensor([[0.1324],[0.2170]], grad_fn=<MeanBackward1>)Variance:tensor([[0.0231],[0.0398]], grad_fn=<VarBackward0>)Normalized layer outputs:tensor([[ 0.6159,  1.4126, -0.8719,  0.5872, -0.8719, -0.8719],[-0.0189,  0.1121, -1.0876,  1.5173,  0.5647, -1.0876]],grad_fn=<DivBackward0>)Mean:tensor([[9.9341e-09],[0.0000e+00]], grad_fn=<MeanBackward1>)
    Variance:tensor([[1.0000],[1.0000]], grad_fn=<VarBackward0>)
    

    归一化会独立应用于两个输入(行)中的每一个;使用 dim=-1 表示在最后一个维度(在本例中为特征维度)上进行计算,而不是在行维度上进行计算。

    关闭科学计数法

    torch.set_printoptions(sci_mode=False) #关闭科学计数法
    print("Mean:\n", mean)
    print("Variance:\n", var)"""输出"""
    Mean:tensor([[    0.0000],[    0.0000]], grad_fn=<MeanBackward1>)
    Variance:tensor([[1.0000],[1.0000]], grad_fn=<VarBackward0>)
    
  • LayerNorm 类实现:基于归一化思路,实现一个 LayerNorm 类,稍后我们可以在 GPT 模型中使用它

    class LayerNorm(nn.Module):def __init__(self, emb_dim):super().__init__()self.eps = 1e-5self.scale = nn.Parameter(torch.ones(emb_dim))self.shift = nn.Parameter(torch.zeros(emb_dim))def forward(self, x):mean = x.mean(dim=-1, keepdim=True)var = x.var(dim=-1, keepdim=True, unbiased=False)norm_x = (x - mean) / torch.sqrt(var + self.eps)return self.scale * norm_x + self.shift
    

    层归一化公式(上面的例子中 γ = 1 \gamma = 1 γ=1 β = 0 \beta=0 β=0 ϵ = 0 \epsilon = 0 ϵ=0
    L a y e r N o r m ( x i ) = γ ⋅ x i − μ σ 2 + ϵ + β LayerNorm(x_i) = \gamma \cdot \frac{x_i-\mu}{\sqrt{\sigma^2 + \epsilon}} + \beta LayerNorm(xi)=γσ2+ϵ xiμ+β
    其中

    1. μ 、 σ 2 \mu 、 \sigma^2 μσ2 分别x在layer维度上的均值和方差

    2. γ 、 β \gamma 、\beta γβ 是可学习的缩放平移参数

    3. ϵ \epsilon ϵ 是一个小常数,用于防止除零错误。

    scaleshift:可训练参数,用于在归一化后调整数据的缩放和偏移。

    有偏方差:在上述方差计算中,设置 unbiased=False,意味着使用公式 ∑ i ( x − x ‾ ) n \frac{\sum_i(x- \overline x)}{n} ni(xx),不包含贝塞尔校正。其中 n 是样本大小(此处为特征或列的数量);该公式不包含贝塞尔校正(即在分母中使用 n-1),因此提供的是方差的有偏估计。(对于 LLMs,嵌入维度 n 非常大,使用 n 和 n-1 之间的差异可以忽略不计,GPT-2 是在归一化层中使用有偏方差进行训练的,因此为了与后续章节中加载的预训练权重兼容,我们也采用了这一设置。)

    ln = LayerNorm(emb_dim=5)
    out_ln = ln(batch_example)
    mean = out_ln.mean(dim=-1, keepdim=True)
    var = out_ln.var(dim=-1, unbiased=False, keepdim=True)print("Mean:\n", mean)
    print("Variance:\n", var)"""输出"""
    Mean:tensor([[    -0.0000],[     0.0000]], grad_fn=<MeanBackward1>)
    Variance:tensor([[1.0000],[1.0000]], grad_fn=<VarBackward0>)
    
  • 所以、本节至此,我们介绍了实现GPT架构所需的构建块之一,如下图中打勾的部分


相关文章:

Chapter4.2:Normalizing activations with layer normalization

文章目录 4 Implementing a GPT model from Scratch To Generate Text4.2 Normalizing activations with layer normalization 4 Implementing a GPT model from Scratch To Generate Text 4.2 Normalizing activations with layer normalization 通过层归一化&#xff08;La…...

EA工具学习使用笔记 ———— 插入图片或UI

文章目录 介绍导入使用方法一方法二方法3介绍 在使用EA的过程中,我们可以EA的图像管理器自定义图像,从而创建有吸引力的图表。也可以通过图像管理器快速扩展可用图像的范围。方法是导入一个捆绑的基于uml的图像剪辑艺术集合作为图像库文件。EA的图像库下载链接为: 导入 Doc…...

[2474].第04节:Activiti官方画流程图方式

我的后端学习大纲 Activiti大纲 1.安装位置&#xff1a; 2.启动&#xff1a;...

JVM和异常

Java 虚拟机&#xff08;Java Virtual Machine&#xff0c;简称 JVM&#xff09; 概述 JVM 是运行 Java 字节码的虚拟计算机&#xff0c;它是 Java 程序能够实现 “一次编写&#xff0c;到处运行&#xff08;Write Once, Run Anywhere&#xff09;” 特性的关键所在。Java 程…...

Harmony OS开发-ArkUI框架速成四

程序员Feri一名12年的程序员,做过开发带过团队创过业,擅长Java相关开发、鸿蒙开发、人工智能等,专注于程序员搞钱那点儿事,希望在搞钱的路上有你相伴&#xff01;君志所向,一往无前&#xff01; 1.图标库 1.1 图标库概述 HarmonyOS 图标库为 HarmonyOS 开发者提供丰富的在线图…...

卡码网 ACM答题编程模板

背景&#xff1a; input() 在 ACM 编程中的底层调用原理 1. input() 的核心原理 在 Python 中&#xff0c;input() 的底层实现依赖于标准输入流 sys.stdin。每次调用 input() 时&#xff0c;Python 会从 sys.stdin 中读取一行字符串&#xff0c;直到遇到换行符 \n 或文件结束…...

逆向入门(6)汇编篇-外挂初体验

代码分析部分 游戏里面还是体验了不少自己CV来的外挂的&#xff0c;自己编写的程序还是头一次体验&#xff0c;程序源码如下 void startAcctack() {printf("开始攻击\n");// 获取当前系统时间time_t now time(0); // 获取当前时间的时间戳struct tm *local_time …...

Vulnhub靶场(Earth)

项目地址 https://download.vulnhub.com/theplanets/Earth.ova.torrent 搭建靶机 官网下载.ova文件双击vm打开导入 获取靶机IP kail终端输入 arp-scan -l 获取靶机 IP 192.168.131.184 信息收集 端口扫描 sudo nmap -sC -sV -p- 192.168.131.184 可以看到开启22端口&…...

CSP初赛知识学习计划

CSP初赛知识学习计划 学习目标 在20天内系统掌握CSP初赛所需的计算机基础知识、编程概念、数据结构、算法等内容&#xff0c;为初赛取得优异成绩奠定坚实基础。 资料收集 整理的CSP知识点文档。相关教材&#xff0c;如《信息学奥赛一本通》等。在线编程学习平台&#xff0c…...

信息科技伦理与道德1:研究方法

1 问题描述 1.1 讨论&#xff1f; 请挑一项信息技术&#xff0c;谈一谈为什么认为他是道德的/不道德的&#xff0c;或者根据使用场景才能判断是否道德。判断的依据是什么&#xff08;自身的道德准则&#xff09;&#xff1f;为什么你觉得你的道德准则是合理的&#xff0c;其他…...

高中数学部分基础知识

文章目录 一、集合二、一元二次方程三、函数四、指数函数五、对数函数六、三角函数1、角度和弧度2、三角函数 高中知识体系丰富&#xff0c;虽然毕业后再也没用过&#xff0c;但是很多数学逻辑还是非常经典的&#xff0c;能够启发我们如何制作逻辑工具去解决现实问题。以下做出…...

机器人领域的一些仿真器

模拟工具和环境对于开发、测试和验证可变形物体操作策略至关重要。这些工具提供了一个受控的虚拟环境&#xff0c;用于评估各种算法和模型的性能&#xff0c;并生成用于训练和测试数据驱动模型的合成数据。 Bullet Physics Library 用于可变形物体模拟的一个流行的物理引擎是 B…...

5大常见高并发限流算法选型浅析

高并发场景下&#xff0c;如何确保系统稳定运行&#xff0c;成为了每一个开发工程师必须面对的挑战。**你是否曾因系统崩溃、请求超时或资源耗尽而头疼不已&#xff1f;**高并发限流算法或许能帮你解决这些难题。 在处理高并发请求时&#xff0c;应该如何选择合适的限流算法呢…...

深入刨析数据结构之排序(下)

目录 1.内部排序 1.5选择排序 1.5.1简单选择排序 1.5.2树形选择排序 1.6堆排序 1.7归并排序 1.7.1递归归并 1.7.2非递归归并 1.8计数排序 1.9基数排序 常见内部排序的总结&#xff1a; 1.内部排序 1.5选择排序 选择排序&#xff08;Selection Sort&#xff09;的基…...

特殊数据类型的深度分析:JSON、数组和 HSTORE 的实用价值

title: 特殊数据类型的深度分析:JSON、数组和 HSTORE 的实用价值 date: 2025/1/4 updated: 2025/1/4 author: cmdragon excerpt: 随着数据管理需求的多样化,许多现代数据库系统开始支持特殊数据类型,以满足更多复杂应用场景的需求。在 PostgreSQL 中,JSON、数组和 HSTOR…...

PCA降维算法详细推导

关于一个小小的PCA的推导 文章目录 关于一个小小的PCA的推导1 谱分解 (spectral decomposition)2 奇异矩阵(singular matrix)3 酉相似(unitary similarity)4 酉矩阵5 共轭变换6 酉等价7 矩阵的迹的计算以及PCA算法推导8 幂等矩阵(idempotent matrix)9 Von Neumanns 迹不等式 [w…...

NS4861 单灯指示独立耳锂电池充放电管理 IC

1 特性  最大 500mA 线性充电电流&#xff0c;外部可调节  内部预设 4.2V 充电浮充电压  支持 0V 电池充电激活  支持充满 / 再充功能  内置同步升压放电模块&#xff0c;输出电压 5.1V  同步升压 VOUT 最大输出电流 500mA  VOL/OR 独…...

编写可复用性的模块

在生活中&#xff0c;重复的机械劳动会消耗我们的时间和精力&#xff0c;提高生产成本&#xff0c;降低工作效率。同样&#xff0c;在代码世界中&#xff0c;编写重复的代码会导致代码的冗余&#xff0c;页面性能的下降以及后期维护成本的增加。由此可见将重复的事情复用起来是…...

2025年1月4日CSDN的Markdown编辑器

这里写自定义目录标题 欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题&#xff0c;有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants 创建一个自定义列表如何创建一个…...

广域网连接PPP

广域网连接PPP PPP协议是一种应用广泛的点到点链路协议&#xff0c;主要用于点到点连接的路由器间的通信。PPP协议既可以用于同步通信&#xff0c;也可以用于异步通信&#xff0c;本部分只讨论同步接口上的PPP配置。 锐捷路由器的同步串行口默认封装Cisco HDLC&#xff0c;所…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...