当前位置: 首页 > news >正文

weight decay 和L2是一个东西吗

weight decay和L2正则化本质上是相同的概念。

weight decay(权重衰减)和L2正则化在深度学习中都是用来防止模型过拟合的常用技术。它们通过对损失函数添加一个正则项来限制模型参数的大小,从而控制模型的复杂度。具体来说,L2正则化是在损失函数中加入权重平方和的惩罚项,而weight decay则是通过在梯度更新时对权重进行一定比例的缩减来实现同样的效果。

在实际应用中,weight decay通常作为优化器的一部分实现,而L2正则化则直接添加到损失函数中。尽管它们的实现方式不同,但在标准随机梯度下降(SGD)优化算法中,两者的效果是等价的。然而,在使用自适应学习率方法如Adam时,L2正则化可能不如weight decay有效,因为Adam会调整每个参数的学习率,这可能导致L2正则化的效果与预期不同

相关文章:

weight decay 和L2是一个东西吗

weight decay和L2正则化本质上是相同的概念。 weight decay(权重衰减)和L2正则化在深度学习中都是用来防止模型过拟合的常用技术。它们通过对损失函数添加一个正则项来限制模型参数的大小,从而控制模型的复杂度。具体来说,L2正则…...

JavaScript系列(8)-- Array高级操作

JavaScript Array高级操作 📚 在前七篇文章中,我们探讨了JavaScript的语言特性、ECMAScript标准、引擎工作原理、数值类型、字符串处理、Symbol类型和Object高级特性。今天,让我们深入了解JavaScript中的Array高级操作。数组是最常用的数据结…...

Harmony开发【笔记1】报错解决(字段名写错了。。)

在利用axios从网络接收请求时,发现返回obj的code为“-1”,非常不解,利用console.log测试,更加不解,可知抛出错误是 “ E 其他错误: userName required”。但是我在测试时,它并没有体现为空,…...

MAC环境安装(卸载)软件

MAC环境安装(卸载)软件 jdknode安装node,并实现不同版本的切换背景 卸载node从node官网下载pkg安装的node卸载用 homebrew 安装的node如果你感觉删的不够干净,可以再细分删除验证删除结果 在macOS下创建home目录 jdk 1.下载jdk 先…...

【Vim Masterclass 笔记05】第 4 章:Vim 的帮助系统与同步练习(L14+L15+L16)

文章目录 Section 4:The Vim Help System(Vim 帮助系统)S04L14 Getting Help1 打开帮助系统2 退出帮助系统3 查看具体命令的帮助文档4 查看帮助文档中的主题5 帮助文档间的上翻、下翻6 关于 linewise7 查看光标所在术语名词的帮助文档8 关于退…...

Multisim更新:振幅调制器+解调器(含仿真程序+文档+原理图+PCB)

前言 继3年前设计的:Multisim:振幅调制器的设计(含仿真程序文档原理图PCB),有读者表示已经不能满足新需求,需要加上新的解调器功能😂😂😂,鸽了很久这里便安排…...

CentOS — 群组管理

文章目录 一、查看群组二、添加群组三、删除群组四、修改群组 Linux 系统中每个用户都属于一个特定的群组。 若不设置用户的群组,默认会创建一个和用户名一样的群组,并将用户分到该群组。 一、查看群组 groups 用户名:查看用户所属群组。 二…...

【pytorch】注意力机制-1

1 注意力提示 1.1 自主性的与非自主性的注意力提示 非自主性提示: 可以简单地使用参数化的全连接层,甚至是非参数化的最大汇聚层或平均汇聚层。 自主性提示 注意力机制与全连接层或汇聚层区别开来。在注意力机制的背景下,自主性提示被称为查…...

html 元素中的data-v-xxxxxx 是什么?为什么有的元素有?有的没有?

data-v-xxxxxx 在 HTML 中,data-v 属性通常与 Vue.js 或其他前端框架一起使用,特别是当这些框架结合 CSS 预处理器(如 Sass、Less)和单文件组件(Single File Components, SFCs)时。data-v 属性的主要目的是…...

第27周:文献阅读及机器学习

目录 摘要 Abstract 一、文献阅读 发现问题 研究方法 CNN-LSTM DT SVR 创新点 案例分析 数据准备 模型性能 预测模型的实现 仿真实验及分析 二、LSTM 1、基本结构 2、具体步骤 3、举例说明 4、原理理解 总结 摘要 本周阅读文献《Short-term water qua…...

回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测

回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测 目录 回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 一、极限学习机(ELM) 极限学习机是一种单层前馈神经网络,具有训练速…...

Swift Protocols(协议)、Extensions(扩展)、Error Handling(错误处理)、Generics(泛型)

最近在学习 Swift,总结相关知识 1. Protocols(协议) 1.1 协议的定义和实现 协议(protocol) 是一种定义方法和属性的蓝图,任何类、结构体或枚举都可以遵循协议。遵循协议后,需要实现协议中定义…...

.NET中的强名称和签名机制

.NET中的强名称(Strong Name)和签名机制是.NET Framework引入的一种安全性和版本控制机制。以下是关于.NET中强名称和签名机制的详细解释: 强名称 定义: 强名称是由程序集的标识加上公钥和数字签名组成的。程序集的标识包括简单文…...

使用 NestJS 构建高效且模块化的 Node.js 应用程序,从安装到第一个 API 端点:一步一步指南

一、安装 NestJS 要开始构建一个基于 NestJS 的应用,首先需要安装一系列依赖包。以下是必要的安装命令: npm i --save nestjs/core nestjs/common rxjs reflect-metadata nestjs/platform-express npm install -g ts-node包名介绍nestjs/coreNestJS 框…...

2025年大模型技术发展趋势展望:高速旋转的飞轮

2025年大模型技术发展趋势展望 引言1. 多模态大模型(MMM):从单一模态到高级模态融合2. 轻量化大模型:从大参数模型到小参数模型3. 强推理大模型:从概率生成到逻辑推理4. 移动端/边缘端Agent:从云端到本地5.…...

java中类的加载过程及各个阶段与运行时数据区中堆和方法区存储内容

java中类的加载过程 Java 类的加载是 JVM 将 字节码文件(.class 文件)加载到内存并最终转化为运行时数据的过程。它分为以下 五个主要阶段:加载、验证、准备、解析、初始化,每个阶段都有对应的内存位置存储相关信息。以下是类加载…...

渗透测试--Web基础漏洞利用技巧

渗透测试--Web基础漏洞利用技巧 本文章写了Web基础漏洞中一些不那么常见的利用技巧,而不谈及漏洞的原理以及常见用法。 SQL 俺是SQLmap党,哈哈,所以这块就不多讲了。详情可见文章《渗透测试--SQLmap_渗透测试sqlmap-CSDN博客》 XXE XXE组成…...

SpringBoot下载文件的几种方式

小文件:直接将文件一次性读取到内存中,文件大可能会导致OOM GetMapping("/download1")public void download1(HttpServletResponse response) throws IOException {// 指定要下载的文件File file new File("C:\\Users\\syd\\Desktop\\do…...

教程:从pycharm基于anaconda构建机器学习环境并运行第一个 Python 文件

1. 安装 PyCharm 访问 PyCharm 官方网站:https://www.jetbrains.com/pycharm/。下载社区版(免费)或专业版(收费,提供更多功能)。按照操作系统的安装指导安装 PyCharm。安装后打开 PyCharm,并根…...

我用Ai学Android Jetpack Compose之Button

答案来自 通义千问,代码同样需要到Android Studio里实践,才能学会。完整工程代码见文末。 我要学Button,麻烦介绍一下 当然可以!Button 是 Jetpack Compose 中用于创建可点击按钮的 Composable 函数。它提供了丰富的配置选项来定…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

vue3 daterange正则踩坑

<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...

Python 高效图像帧提取与视频编码:实战指南

Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...