当前位置: 首页 > news >正文

Zero to JupyterHub with Kubernetes 下篇 - Jupyterhub on k8s

前言:纯个人记录使用。

  • 搭建 Zero to JupyterHub with Kubernetes 上篇 - Kubernetes 离线二进制部署。
  • 搭建 Zero to JupyterHub with Kubernetes 中篇 - Kubernetes 常规使用记录。
  • 搭建 Zero to JupyterHub with Kubernetes 下篇 - Jupyterhub on k8s。

官方文档:Zero to JupyterHub with Kubernetes

**版本对应:**This documentation is for Helm chart version 2.0.0 that deploys JupyterHub version 3.0.0 and other components versioned in hub/images/requirements.txt. The Helm chart requires Kubernetes version >=1.20.0 and Helm >=3.5

组件版本
kubernetesv1.20.4
jupyterhub-chart2.0.0
helmv3.12.3

文章目录

    • 第一部分: Setup Kubernetes
      • 1、Setup Kubernetes
      • 2、Setting up `helm`
    • 第二部分: Setup JupyterHub
      • 1、Installing JupyterHub
        • 1.1 下载所需jupyterhub chart版本
        • 1.2 下载相关离线镜像
        • 1.3 加载镜像
        • 1.4 jupyterhub 配置
        • 1.4.1 预先配置pv与pvc
        • 1.5 启动jupyterhub
        • 1.6 jupyterhub 服务验证

第一部分: Setup Kubernetes

1、Setup Kubernetes

kubernetes-v1.20.4 离线二进制部署

[root@k8s-master /data/s0/kubernetes]$ kubectl version --short
Client Version: v1.20.4
Server Version: v1.20.4

2、Setting up helm

通过百度网盘分享的文件:helm-v3.12.3-linux-amd64.tar.gz
链接:https://pan.baidu.com/s/1f8xONKHWshHxieu7jEN4yA
提取码:1234

# 解压安装
[root@k8s-master /data/s0/kubernetes/helm]$ tar -xzvf helm-v3.12.3-linux-amd64.tar.gz
[root@k8s-master /data/s0/kubernetes/helm]$ ln -s /data/s0/kubernetes/helm/linux-amd64/helm /usr/local/bin
# 验证
[root@k8s-master /data/s0/kubernetes/helm]$ helm version
version.BuildInfo{Version:"v3.12.3", GitCommit:"3a31588ad33fe3b89af5a2a54ee1d25bfe6eaa5e", GitTreeState:"clean", GoVersion:"go1.20.7"}

第二部分: Setup JupyterHub

1、Installing JupyterHub

1.1 下载所需jupyterhub chart版本

​ JupyterHub’s Helm chart 仓库 --> jupyterhub-2.0.0.tgz

通过百度网盘分享的文件:jupyterhub-2.0.0.tgz
链接:https://pan.baidu.com/s/1ZrEHC9al29ye7n0W3UAi3g
提取码:1234

1.2 下载相关离线镜像
# 解压安装
[root@k8s-master /data/s0/kubernetes/helm]$ tar -xzvf jupyterhub-2.0.0.tgz   # jupyterhub chart 
# 查看所需镜像
[root@k8s-master /data/s0/kubernetes/helm]$ cat jupyterhub/Chart.yaml
annotations:artifacthub.io/images: |- image: jupyterhub/configurable-http-proxy:4.5.3name: configurable-http-proxy- image: jupyterhub/k8s-hub:2.0.0name: k8s-hub- image: jupyterhub/k8s-image-awaiter:2.0.0name: k8s-image-awaiter- image: jupyterhub/k8s-network-tools:2.0.0name: k8s-network-tools- image: jupyterhub/k8s-secret-sync:2.0.0name: k8s-secret-sync- image: jupyterhub/k8s-singleuser-sample:2.0.0name: k8s-singleuser-sample- image: k8s.gcr.io/kube-scheduler:v1.23.10  # helm upgrate 启动部署时,此版本有问题,改为v1.20.15,注意values.yaml中镜像名称修改,镜像保持一致name: kube-scheduler- image: k8s.gcr.io/pause:3.8  # 部署k8s时已下载安装,注意values.yaml中镜像名称修改,保持一致name: pause- image: k8s.gcr.io/pause:3.8name: pausd- image: traefik:v2.8.4name: traefik# 联网保存本地镜像
# 1. 下载保存 jupyterhub/configurable-http-proxy:4.5.3
> docker pull quay.io/jupyterhub/configurable-http-proxy:4.5.3
> docker tag quay.io/jupyterhub/configurable-http-proxy:4.5.3 jupyterhub/configurable-http-proxy:4.5.3
> docker save -o configurable-http-proxy:4.5.3.tar jupyterhub/configurable-http-proxy:4.5.3  # 2. 下载保存 jupyterhub/k8s-hub:2.0.0
> docker pull quay.io/jupyterhub/k8s-hub:2.0.0
> docker tag quay.io/jupyterhub/k8s-hub:2.0.0 jupyterhub/k8s-hub:2.0.0
> docker save -o k8s-hub:2.0.0.tar jupyterhub/k8s-hub:2.0.0# 3. 下载保存 jupyterhub/k8s-image-awaiter:2.0.0
> docker pull quay.io/jupyterhub/k8s-image-awaiter:2.0.0
> docker tag  quay.io/jupyterhub/k8s-image-awaiter:2.0.0 jupyterhub/k8s-image-awaiter:2.0.0> docker save -o k8s-image-awaiter:2.0.0.tar jupyterhub/k8s-image-awaiter:2.0.0
# 4. 下载保存 jupyterhub/k8s-network-tools:2.0.0
> docker pull quay.io/jupyterhub/k8s-network-tools:2.0.0
> docker tag  quay.io/jupyterhub/k8s-network-tools:2.0.0 jupyterhub/k8s-network-tools:2.0.0
> docker save -o k8s-network-tools:2.0.0.tar jupyterhub/k8s-network-tools:2.0.0# 5. 下载保存 jupyterhub/k8s-secret-sync:2.0.0
> docker pull quay.io/jupyterhub/k8s-secret-sync:2.0.0
> docker tag quay.io/jupyterhub/k8s-secret-sync:2.0.0 jupyterhub/k8s-secret-sync:2.0.0
> docker save -o k8s-secret-sync:2.0.0.tar jupyterhub/k8s-secret-sync:2.0.0# 6. 下载保存 jupyterhub/k8s-singleuser-sample:2.0.0
> docker pull m.daocloud.io/docker.io/jupyterhub/k8s-singleuser-sample:2.0.0
> docker tag m.daocloud.io/docker.io/jupyterhub/k8s-singleuser-sample:2.0.0 jupyterhub/k8s-singleuser-sample:2.0.0
> docker save -o k8s-singleuser-sample:2.0.0.tar jupyterhub/k8s-singleuser-sample:2.0.0# 7. 下载保存 k8s.gcr.io/kube-scheduler:v1.20.15
> docker pull k8s-gcr.m.daocloud.io/kube-scheduler:v1.20.15
> docker tag k8s-gcr.m.daocloud.io/kube-scheduler:v1.20.15  k8s.gcr.io/kube-scheduler:v1.20.15
> docker save -o kube-scheduler:v1.20.15.tar k8s.gcr.io/kube-scheduler:v1.20.15# 8. 下载保存 traefik:v2.8.4
> docker pull m.daocloud.io/docker.io/library/traefik:v2.8.4
> docker tag m.daocloud.io/docker.io/library/traefik:v2.8.4 traefik:v2.8.4
> docker save -o traefik:v2.8.4.tar traefik:v2.8.4## 9. 将离线镜像打包上传
> tar -czvf jupyterhub-chart-images.tgz ./*
> scp jupyterhub-chart-images.tgz k8s-master:/data/s0/kubernetes/helm
1.3 加载镜像
# ------------------ k8s-matser,k8s-node1、k8s-node2 ----------------------------
# 1. 加载镜像,node1、node2节点同理
[root@k8s-master /data/s0/kubernetes/helm]$ tar -xzvf jupyterhub-chart-images.tgz -C ./chart-images
[root@k8s-master /data/s0/kubernetes/helm/chart-images]$ docker load -i configurable-http-proxy:4.5.3.tar
[root@k8s-master /data/s0/kubernetes/helm/chart-images]$ docker load -i k8s-hub:2.0.0.tar
[root@k8s-master /data/s0/kubernetes/helm/chart-images]$ docker load -i k8s-image-awaiter:2.0.0.tar
[root@k8s-master /data/s0/kubernetes/helm/chart-images]$ docker load -i k8s-network-tools:2.0.0.tar
[root@k8s-master /data/s0/kubernetes/helm/chart-images]$ docker load -i k8s-secret-sync:2.0.0.tar
[root@k8s-master /data/s0/kubernetes/helm/chart-images]$ docker load -i k8s-singleuser-sample:2.0.0.tar
[root@k8s-master /data/s0/kubernetes/helm/chart-images]$ docker load -i kube-scheduler:v1.20.15.tar
[root@k8s-master /data/s0/kubernetes/helm/chart-images]$ docker load -i traefik:v2.8.4.tar# 2.加载自定义用户科学环境;默认的单用户服务器jupyter镜像 k8s-singleuser-sample
# docker pull m.daocloud.io/docker.io/jupyter/datascience-notebook 默认拉取最新版本,最好指定版本,否则每次拉最新的
[root@k8s-master /data/s0/kubernetes/helm]$ docker load -i datascience-notebook.tar
# 注意:k8s在不指定镜像拉取策略imagePullPolicy的情况下,如果镜像标签tag:latest,imagePullPolicy默认值为“Always” 总是从镜像库拉取;
# 如果镜像标签tag不是:latest,imagePullPolicy默认值为“IfNotPresent” 本地有使用本地镜像,本地没有则拉取镜像库;
[root@k8s-master /data/s0/kubernetes/helm]$ docker tag jupyter/datascience-notebook:latest jupyter/datascience-notebook:2023.10.23
1.4 jupyterhub 配置
# jupyterhub 自定义配置
[root@datanode40 /data/s0/kubernetes/helm]$ touch config.yaml
[root@datanode40 /data/s0/kubernetes/helm]$ vim config.yaml

config.yaml 内容如下:

# 应用名称(deployment、service、pod等资源对象名称)
fullnameOverride: "jupyterhub"# 拉取镜像时,相关仓库身份认证(使用本机离线镜像)
imagePullSecret:create: falseautomaticReferenceInjection: false# hub服务pod配置(auth权限认证)
hub:revisionHistoryLimit: 1                  # Kubernetes 中保留的历史版本数量config:                                  # jupyterhub_cnfig.py 配置文件内容JupyterHub:admin_access: trueadmin_users: - zyp                             # 设置管理员用户authenticator_class: dummy           # 用户验证,测试采用虚拟验证service:type: ClusterIP                        ports:nodePort:db:type: sqlite-pvc                       #  JupyterHub 使用数据库,存储用户信息、服务器状态、活动记录等数据pvc:                                   # 需要预先创建对应pvaccessModes:- ReadWriteOncestorage: 2GisubPath: sqlite                      # PV存储卷子路径,默认根路径storageClassName: sqlite-pv          # 存储类别image:name: jupyterhub/k8s-hubtag: "2.0.0"pullPolicy: IfNotPresent#设置 chp(configurable-http-proxy)pod的代理、公网代理、https代理相关
proxy:service:type: NodePort                            # 公网代理服务                nodePorts:http: 30081chp:                                         # configurable-http-proxy (chp)配置revisionHistoryLimit: 1image:name: jupyterhub/configurable-http-proxytag: "4.5.3" pullPolicy: IfNotPresenthttps:enabled: false                              # 禁用https          # 单用户jupyter服务器
singleuser:networkTools:image:name: jupyterhub/k8s-network-toolstag: "2.0.0"pullPolicy: IfNotPresentstorage:                                       # 配置单用户环境存储type: static                                 # 静态挂载方式static:pvcName: notebook-pvc                      # 存储pvc名称,需手动创建pvc和pvsubPath: "{username}"capacity: 10GihomeMountPath: /home/jovyan                  # 容器中挂载主文件夹存储的位置     # Defines the default image  image:name: jupyterhub/k8s-singleuser-sample        # 可修改为自己的科学计算环境tag: "2.0.0"pullPolicy: IfNotPresent profileList:                                    # 用户科学环境选择- display_name: "sample environment"description: "To avoid too much bells and whistles: Python."default: true- display_name: "Datascience environment"description: "If you want the additional bells and whistles: Python, R, and Julia."kubespawner_override:image: jupyter/datascience-notebook:2023.10.23pullPolicy: IfNotPresentstartTimeout: 300cpu:limit:guarantee: 0.5memory:limit:guarantee: 1Gcmd: jupyterhub-singleuser       # 容器内,启动单用户服务器的命令defaultUrl: "/lab"               # 用户jupyter界面extraEnv:JUPYTERHUB_SINGLEUSER_APP: "jupyter_server.serverapp.ServerApp"  # k8s 容器调度相关
scheduling:userScheduler:revisionHistoryLimit: 1image:name: k8s.gcr.io/kube-schedulertag: "v1.20.15" pullPolicy: IfNotPresentuserPlaceholder:image:name: k8s.gcr.io/pausetag: "3.8"pullPolicy: IfNotPresent# 镜像拉取器
prePuller:                               hook:enabled: false                       # 离线环境,本地镜像,无需拉取pullOnlyOnChanges: falsecontinuous:enabled: falsepullProfileListImages: false# 空闲进程杀死服务 
cull:enabled: trueusers: false # --cull-usersadminUsers: true # --cull-admin-usersremoveNamedServers: false # --remove-named-serverstimeout: 3600 # --timeoutevery: 600 # --cull-everyconcurrency: 10 # --concurrencymaxAge: 0 # --max-age
1.4.1 预先配置pv与pvc

pv 持久化参见 Kubernetes 常规使用记录。

# 配置sqlite存储的PV 和 单用户服务器存储的pv和PVC
[root@k8s-node1 /data/s0/kubernetes/nfs]$ mkdir pvs
[root@k8s-node1 /data/s0/kubernetes/nfs/pvs]$ vim pvs.yaml
# sqlite存储的PV
apiVersion: v1
kind: PersistentVolume
metadata:name: sqlite-pv1      
spec:nfs: path: /data/s0/kubernetes/nfs/pv1readOnly: false server: k8s-node1capacity: storage: 2GiaccessModes: - ReadWriteOncestorageClassName: sqlite-pv  persistentVolumeReclaimPolicy: Retain
---
# 单用户服务器pv
apiVersion: v1
kind: PersistentVolume
metadata:name: notebook-pv2      
spec:nfs: path: /data/s0/kubernetes/nfs/pv2readOnly: false server: k8s-node1capacity: storage: 200GiaccessModes: - ReadWriteMany storageClassName: single-notebook   persistentVolumeReclaimPolicy: Retain 
---  
# 单用户服务器pvc
apiVersion: v1
kind: PersistentVolumeClaim
metadata:name: notebook-pvc                # 与配置文件对应 namespace: jhub 
spec:accessModes:- ReadWriteManystorageClassName: single-notebook  resources: requests:storage: 20Gi
1.5 启动jupyterhub
# 创建命名空间
[root@k8s-master /data/s0/kubernetes/helm]$ kubectl create ns jhub
# 启动预设pvc和pv 
[root@k8s-node1 /data/s0/kubernetes/nfs/pvs]$ kubectl apply -f pvs.yaml
# 启动jupyterhub
[root@k8s-master /data/s0/kubernetes/helm]$ helm upgrade --cleanup-on-fail \--install jupyterhub-release ./jupyterhub \--namespace jhub \--values config.yaml

在这里插入图片描述

# 验证pod运行状态(若存在pod 状态  Pending or ContainerCreating --》 kubectl --namespace=jhub describe pod <name of pod>)
[root@k8s-master /data/s0/kubernetes/helm]$ kubectl --namespace=jhub get pod
jupyterhub-hub-c87985f75-lkl4f               1/1     Running   0          5m18s
jupyterhub-proxy-5d95bb6786-87cqs            1/1     Running   0          5m18s
jupyterhub-user-scheduler-786c6759c7-2r24k   1/1     Running   0          5m18s
jupyterhub-user-scheduler-786c6759c7-6x5k6   1/1     Running   0          5m18s# 验证是否为k8s服务jupyterhub-proxy-public提供了外部IP
[root@k8s-master /data/s0/kubernetes/helm]$ kubectl --namespace=jhub get svc 
NAME                      TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)        AGE
jupyterhub-hub            ClusterIP   10.0.0.50    <none>        8081/TCP       90s
jupyterhub-proxy-api      ClusterIP   10.0.0.196   <none>        8001/TCP       90s
jupyterhub-proxy-public   NodePort    10.0.0.51    <none>        80:30081/TCP   90s

问题:Error: rendered manifests contain a resource that already exists. Unable to continue with install: ClusterRole “jupyterhub-user-scheduler” in namespace “” exists and cannot be imported into the current release: invalid ownership metadata; annotation validation error: key “meta.helm.sh/release-name” must equal “jupyterhub-release”: current value is “jupyterhub-v1”

解决:

​ kubectl delete clusterrole jupyterhub-user-scheduler

​ kubectl delete clusterrolebinding jupyterhub-user-scheduler

1.6 jupyterhub 服务验证

远程主机登录 http://k8s-matser:80081

  • 用户登录界面
    在这里插入图片描述

  • 科学计算环境选择界面
    在这里插入图片描述

  • 用户分析操作界面

    在这里插入图片描述

  • 底层单用户容器

在这里插入图片描述

  • 持久化存储查看

在这里插入图片描述

  • k8s管理界面查看

在这里插入图片描述

相关文章:

Zero to JupyterHub with Kubernetes 下篇 - Jupyterhub on k8s

前言&#xff1a;纯个人记录使用。 搭建 Zero to JupyterHub with Kubernetes 上篇 - Kubernetes 离线二进制部署。搭建 Zero to JupyterHub with Kubernetes 中篇 - Kubernetes 常规使用记录。搭建 Zero to JupyterHub with Kubernetes 下篇 - Jupyterhub on k8s。 官方文档…...

解决 Tomcat 跨域问题 - Tomcat 配置静态文件和 Java Web 服务(Spring MVC Springboot)同时允许跨域

解决 Tomcat 跨域问题 - Tomcat 配置静态文件和 Java Web 服务&#xff08;Spring MVC Springboot&#xff09;同时允许跨域 Tomcat 配置允许跨域Web 项目配置允许跨域Tomcat 同时允许静态文件和 Web 服务跨域 偶尔遇到一个 Tomcat 部署项目跨域问题&#xff0c;因为已经处理…...

在C语言中使用伪终端与bash交互

了解伪终端概念&#xff1a; 伪终端&#xff08;PTY&#xff09;由一对设备组成&#xff1a;主设备&#xff08;master&#xff09;和从设备&#xff08;slave&#xff09;。数据写入主设备会出现在从设备&#xff0c;反之亦然。这允许一个进程通过主设备与另一个进程&#xff…...

阿里云 人工智能与机器学习

阿里云的 人工智能&#xff08;AI&#xff09;与机器学习&#xff08;ML&#xff09; 服务为企业提供了全面的AI解决方案&#xff0c;帮助用户在多个行业实现数据智能化&#xff0c;提升决策效率&#xff0c;推动业务创新。阿里云通过先进的技术和丰富的工具&#xff0c;支持用…...

HTML 显示器纯色亮点检测工具

HTML 显示器纯色亮点检测工具 相关资源文件已经打包成html等文件&#xff0c;可双击直接运行程序&#xff0c;且文章末尾已附上相关源码&#xff0c;以供大家学习交流&#xff0c;博主主页还有更多Html相关程序案例&#xff0c;秉着开源精神的想法&#xff0c;望大家喜欢&#…...

【漏洞分析】UDF提权漏洞——CVE-2016-6662-MySQL ‘malloc_lib’变量重写命令执行

0x00 前言 最近在做渗透笔记&#xff0c;其中有一个靶机在getshell后&#xff0c;需要进行提权。发现靶机使用root启动的mysql服务&#xff0c;那么尝试使用UDF提权。于是在提权成功后&#xff0c;花了一天时间特意搜了一下整个UDF提权的漏洞原理和利用&#xff0c;加深理解。…...

Mybatis(day09)

Mybatis基础操作 功能列表&#xff1a; 查询 根据主键ID查询 条件查询新增更新删除 根据主键ID删除 根据主键ID批量删除 准备 实施前的准备工作&#xff1a; 准备数据库表创建一个新的 springboot 工程&#xff0c;选择引入对应的起步依赖&#xff08;mybatis、mysql 驱动、…...

模式识别与机器学习 | 十一章 概率图模型基础

隐马尔科夫模型&#xff08;Hidden Markov Model,HMM&#xff09; HMM是建模序列数据的图模型 1、第一个状态节点对应一个初始状态概率分布 2、状态转移矩阵A, 3、发射矩阵概率B 4、对特定的&#xff08;x,y&#xff09;的联合概率可以表示为 α递归计算——前向算法β递归…...

深圳知识产权保护中心再发力,两大产业专利预审服务全新升级

在当今科技迅猛发展、市场竞争日益激烈的时代&#xff0c;知识产权保护对于产业发展的重要性不言而喻。深圳知识产权保护中心又有大动作&#xff0c;为高端装备制造和珠宝加工产业带来了专利预审服务的新突破。这一举措不仅为这两个产业注入了强大的发展动力&#xff0c;也为深…...

同步与并发:Java的同步舞蹈

现在&#xff0c;我们将深入探讨同步与并发&#xff0c;这是确保多线程程序正确性和效率的关键&#xff0c;就像是Java的同步舞蹈。 1 并发的概念 并发是指在多处理器系统中&#xff0c;多个操作或多个线程同时进行执行。在Java中&#xff0c;这意味着能够有效地利用多核处理…...

Kafka详解 ③ | Kafka集群操作与API操作

目录 1、Kafka集群操作 1.1、创建 topic 1.2、查看主题命令 1.3、生产者生产 1.4、消费者消费数据 1.5、运行 describe topics命令 1.6、增加 topic分区数 1.7、增加配置 1.8、删除配置 1.9、删除 topic 2、Kafka的Java API操作 2.1、生产者代码 2.2、消费者代 2…...

k8s基础(1)—Kubernetes-Pod

一、Pod简介 Pod是Kubernetes&#xff08;k8s&#xff09;系统中可以创建和管理的最小单元&#xff0c;是资源对象模型中由用户创建或部署的最小资源对象模型‌。Pod是由一个或多个容器组成的&#xff0c;这些容器共享存储和网络资源&#xff0c;可以看作是一个逻辑的主机‌。…...

iOS - 数组的真实类型

1. NSArray 类簇 // 1. __NSArray0 (空数组) NSArray *empty [];// 2. __NSArrayI (不可变数组) NSArray *immutable [1, 2, 3];// 3. __NSArrayM (可变数组) NSMutableArray *mutable [NSMutableArray array];// 4. __NSSingleObjectArrayI (单元素数组) NSArray *single …...

k8s启动报错

执行kubeadm init --image-repository registry.aliyuncs.com/google_containers 出现如下结果: [api-check] The API server is not healthy after 4m0.000885686s Unfortunately, an error has occurred: context deadline exceeded This error is likely caused by:…...

git:指令集

以下是对这些 Git 新特性和命令的更详细解读和实际用例分析&#xff0c;帮助更好地理解它们的作用及适用场景&#xff1a; 1. git switch 和 git restore 背景&#xff1a; 传统上&#xff0c;git checkout 是一个多功能命令&#xff0c;用于切换分支、检出文件、创建分支等&…...

自闭症家庭:建立支持系统与平衡生活

在自闭症家庭的世界里&#xff0c;每一天都充满了挑战与希望。自闭症&#xff0c;这一复杂的神经发育障碍&#xff0c;不仅影响着孩子的成长轨迹&#xff0c;也对整个家庭的生活方式产生了深远的影响。面对这一挑战&#xff0c;许多家庭都在努力寻找有效的支持系统和平衡生活的…...

html+css+js网页设计 美食 美食天下2个页面(里面包含php和mysql)

htmlcssjs网页设计 美食 美食天下2个页面&#xff08;里面包含php和mysql&#xff09; 网页作品代码简单&#xff0c;可使用任意HTML辑软件&#xff08;如&#xff1a;Dreamweaver、HBuilder、Vscode 、Sublime 、Webstorm、Text 、Notepad 等任意html编辑软件进行运行及修改编…...

高阶知识库搭建实战七、(知识库雏形开发:qianwen-plus+Faiss)(练习推荐)

构建知识库:结合Faiss和qianwen-plus大模型的实践 环境搭建参考前面几篇文章:基础环境搭建、Faiss向量数据库安装 在当今信息爆炸的时代,如何高效地管理和检索海量知识成为了一个重要课题。知识库的构建为我们提供了一种有效的解决方案,它能够将分散的信息整合起来,方便…...

麒麟服务器安装kafka--亲测

我这安装的是单机版本的&#xff1a; 下载地址&#xff1a;Index of /kafka/3.9.0 我下载的是&#xff1a;https://dlcdn.apache.org/zookeeper/zookeeper-3.9.3/apache-zookeeper-3.9.3-bin.tar.gz https://dlcdn.apache.org/kafka/3.9.0/kafka_2.12-3.9.0.tgz 一、下载并上…...

微机——8086微处理器的数据传送指令

目录 数据传送指令&#xff1a; 通用数据传送指令&#xff1a; MOV指令&#xff1a; 堆栈操作指令&#xff1a; PUSH指令&#xff1a; POP指令&#xff1a; 交换指令XCHG&#xff1a; XCHG指令&#xff1a; 换码指令XLAT&#xff1a; 换码指令XLAT&#xff1a; 8086 …...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...