分治算法——优选算法
本章我们要学习的是分治算法,顾名思义就是分而治之,把大问题分为多个相同的子问题进行处理,其中我们熟知的快速排序和归并排序用的就是分治算法,所以我们需要重新回顾一下这两个排序。
一、快速排序(三路划分)
1.算法思想:
首先从数列中确定一个需要排序的数(记为key),把所有key排到它的正确位置(即排序后它的位置),然后同样的方法,使用递归(分治思想)把小于key的区间与大于key的区间进行排序,直到这个区间不存在或只有一个元素时返回。
具体方法:从左到右遍历数组,并且我们使用三个变量(left,mid,right)把数组划分为四个区间,分别表示小于key,等于key,未遍历,大于key。而mid位置就是此时遍历到的数,判断这个数与key的关系,然后把它放在对应的区间。再用同样方法将大于key和小于key的区间排序。
注意:在此快速排序我使用了三路划分的优化方法,和对key取用随机值,这样比普通的快速排序效率要高得多,而且是一种很实用的分治算法。
2.代码实现:
vector<int> sortArray(vector<int>& nums){srand((unsigned int)time(NULL));dfs(0,nums.size()-1,nums);return nums;}void dfs(int n,int m,vector<int>& nums){if(n>=m) return;int key=nums[n+rand()%(m-n+1)];int left=n-1,right=m+1,mid=n;while(mid<right){if(nums[mid]<key) swap(nums[++left],nums[mid++]);else if(nums[mid]==key) mid++;else swap(nums[mid],nums[--right]);}dfs(n,left,nums);dfs(right,m,nums);}
二、归并排序
1.算法思想:
对于一个乱序的数组,我们可以把一分为二,先让两个小数组有序然后再将它们合并。那么如何让这两个小数组有序呢,同样的可以把它们分别再拆开,变成四个小组,然后继续一直往下拆,直到拆到只有一个元素,那么它必然是有序的,最后进行一一合并,这整个的思路有点像二叉树的后续遍历。
2.代码实现:
vector<int> tmp;vector<int> sortArray(vector<int>& nums){tmp.reserve(nums.size());dfs(0,nums.size()-1,nums);return nums;}void dfs(int left,int right,vector<int>& nums){if(left>=right) return;int mid=(left+right)>>1;dfs(left,mid,nums);dfs(mid+1,right,nums);int p1=left,p2=mid+1;int i=left;while(p1<=mid&&p2<=right)tmp[i++]=nums[p1]<=nums[p2]?nums[p1++]:nums[p2++];while(p1<=mid) tmp[i++]=nums[p1++];while(p2<=right) tmp[i++]=nums[p2++];for(int j=left;j<=right;j++) nums[j]=tmp[j];}
对于快速排序和归并排序,需要了解更多细节请参考下文:
【排序算法】—— 快速排序_快速排序方法-CSDN博客
【排序算法】—— 归并排序-CSDN博客
三、快速选择算法
当我们看到这个题目的时候,可能脑子里很快想到用堆解决TopK问题,或者是使用排序来解决。 但这是一个面试题,以上两种解决方法都不足以让我们拿到offer。需要注意题目描述是任意顺序返回这k个数,而不是有序返回,那么我们就应该意识到应该还有更优的解决方法。
对于使用堆和排序,时间复杂度都为O(nlogn),而这个题我们可以用快速选择算法,时间复杂度为O(n),这是由快速排序延伸出的一个算法。同样使用分治思想。
算法思想:
class Solution {
public:vector<int> smallestK(vector<int>& arr, int k){srand((unsigned int)time(NULL));dfs(0,arr.size()-1,arr,k);return {arr.begin(),arr.begin()+k};}void dfs(int l,int r,vector<int>& arr,int k){if(l>r) return;int key=arr[rand()%(r-l+1)+l];int left=l-1,right=r+1,mid=l;while(mid<right){if(arr[mid]<key) swap(arr[++left],arr[mid++]);else if(arr[mid]==key) mid++;else swap(arr[mid],arr[--right]);}int a=left-l+1,b=mid-left-1;if(k<a) dfs(l,left,arr,k);else if(k<=a+b) return;else dfs(right,r,arr,k-a-b);}
};
四、逆序对问题
关于这个题,最容易想到的就是暴力方法,双重循环,时间复杂度为O(n^2),毫无疑问是通过不了这个题的,这个题我们可以利用归并排序来完成计数,时间复杂度为O(nlogn)。
算法思想:
class Solution {
public:int count=0;vector<int> tmp;int reversePairs(vector<int>& record) {tmp.reserve(record.size());dfs(0,record.size()-1,record);return count;}void dfs(int left,int right,vector<int>& nums){if(left>=right) return;int mid=(left+right)>>1;dfs(left,mid,nums);dfs(mid+1,right,nums);int p1=left,p2=mid+1;int i=left;while(p1<=mid&&p2<=right){if(nums[p1]<=nums[p2]) tmp[i++]=nums[p1++];else count+=mid-p1+1, tmp[i++]=nums[p2++];}while(p1<=mid) tmp[i++]=nums[p1++];while(p2<=right) tmp[i++]=nums[p2++];for(int i=left;i<=right;i++)nums[i]=tmp[i];}
};
非常感谢您能耐心读完这篇文章。倘若您从中有所收获,还望多多支持呀!
相关文章:

分治算法——优选算法
本章我们要学习的是分治算法,顾名思义就是分而治之,把大问题分为多个相同的子问题进行处理,其中我们熟知的快速排序和归并排序用的就是分治算法,所以我们需要重新回顾一下这两个排序。 一、快速排序(三路划分…...

EtherCAT转Modbus网关与TwinCAT3的连接及配置详述
在工业自动化控制系统中,常常需要整合不同的通信协议设备。本案例旨在展示如何利用捷米特JM-ECT-RTU协议转换网关模块,实现 EtherCAT 网络与 Modbus 设备之间的无缝连接,并在 TwinCAT3 环境中进行有效配置,以构建一个稳定可靠的自…...

Apache Hadoop YARN框架概述
一、YARN产生和发展简史 1.1背景 数据、程序、运算资源(内存、CPU)三者组在一起,才能完成数据的计算处理过程。在单机环境下,三者之间协调配合不是太大问题。为了应对海量数据的处理场景,Hadoop软件出现并提供了分布…...

三甲医院等级评审八维数据分析应用(八)--数据治理的持续改进与反馈机制篇
一、引言 1.1 研究背景与意义 当前三甲医院在数据管理方面暴露出诸多棘手问题。一方面,数据治理缺乏系统性与规范性,数据标准不统一,不同科室、信息系统之间的数据格式各异、编码混乱,导致数据整合与共享困难重重,严重制约了数据分析的准确性与深度。以某三甲医院为例,…...
XML通过HTTP POST 请求发送到指定的 API 地址,进行数据回传
代码结构说明 这段代码的主要功能是: 从指定文件夹中读取所有 XML 文件。 将每个 XML 文件的内容通过 HTTP POST 请求发送到指定的 API 地址。 处理服务器的响应,并记录每个文件的处理结果。 using System; using System.IO; using System.Net; usin…...
科大讯飞前端面试题及参考答案 (下)
除了 echarts 还了解其它画图工具吗? 除了 Echarts,还有不少优秀的画图工具可供选择使用。 Highcharts:它是一款功能强大且应用广泛的图表绘制工具,支持多种常见的图表类型,像柱状图、折线图、饼图、散点图等,同时也能创建较为复杂的图表,比如仪表盘图表、极坐标图等。H…...

【理论】测试框架体系TDD、BDD、ATDD、DDT介绍
一、测试框架是什么 测试框架是一组用于创建和设计测试用例的指南或规则。框架由旨在帮助 QA 专业人员更有效地测试的实践和工具的组合组成。 这些指南可能包括编码标准、测试数据处理方法、对象存储库、存储测试结果的过程或有关如何访问外部资源的信息。 A testing framewo…...
如何进行全脑思维(左脑,右脑,全脑)
1)每人都有一个价值100万美元的点子 . 谁能帮助实施这个点子? . 实施这个点子需要哪些资源? . 推行这个点子需要得到哪些许可? . 是否有实施这个点子的最佳时间? . 作为实施的开始,最简单的做法是什么? 2) 进行理性的、逻辑的、量的思维那一半,而排除了大脑的…...

领域驱动设计 2
1.幂等设计 1.1.定义 无论进行多少次相同的操作,结果都保持一致的设计。 1.2.写操作的幂等性 1.2.1.Insert 指定唯一标识写,是具有幂等性的。 不指定唯一标识写,不具备幂等性。 1.2.2.Update 如果更新操作依赖于与历史状态,…...

十年后LabVIEW编程知识是否会过时?
在考虑LabVIEW编程知识在未来十年内的有效性时,我们可以从几个角度进行分析: 1. 技术发展与软件更新 随着技术的快速发展,许多编程工具和平台不断更新和改进,LabVIEW也不例外。十年后,可能会有新的编程语言或平台…...

ARM交叉编译Boost库
Boost下载:点击跳转 编译过程: 生成project-config.jam ./bootstrap.sh --with-librariesfilesystem,thread --with-toolsetgcc 2. 修改project-config.jam(位于第12行附近) if ! gcc in [ feature.values <toolset> ] …...
uniapp:钉钉小程序需要录音权限及调用录音
{// ... 其他配置项"mp-dingtalk": {"permission": {"scope.userLocation" : {"desc" : "系统希望获得您的定位用于确认您周围的设施数据"},"scope.bluetooth" : {"desc" : "你的蓝牙权限将用于小…...

Swin Transformer模型详解(附pytorch实现)
写在前面 Swin Transformer(Shifted Window Transformer)是一种新颖的视觉Transformer模型,在2021年由微软亚洲研究院提出。这一模型提出了一种基于局部窗口的自注意力机制,显著改善了Vision Transformer(ViT…...
gitee 使用教程
前言 Gitee 是一个中国的开源代码托管平台,类似于 GitHub,旨在为开发者提供一个高效、稳定、安全的代码管理和协作开发环境。Gitee 支持 Git 协议,可以托管 Git 仓库,进行版本控制、代码协作、项目管理等操作。 1. Gitee 的主要…...

基于YOLOv8的水下目标检测系统
基于YOLOv8的水下目标检测系统 (价格90) 使用的是DUO水下目标检测数据集 训练集 6671张 验证集 1111张 测试集 1111张 包含 [holothurian, echinus, scallop, starfish] [海参, 海胆, 扇贝, 海星] 4个类 通过PYQT构建UI界面,包含图片检测,视…...

浅析PCIe链路均衡技术原理与演进
在现代计算机硬件体系的持续演进中,PCIe技术始终扮演着核心角色,其作为连接 CPU 与各类周边设备的关键高速通信链路,不断推动着计算机性能边界的拓展。而 PCIe Link Equalization均衡技术,作为保障数据在高速传输过程中准确性与稳…...

js代理模式
允许在不改变原始对象的情况下,通过代理对象来访问原始对象。代理对象可以在访问原始对象之前或之后,添加一些额外的逻辑或功能。 科学上网过程 一般情况下,在访问国外的网站,会显示无法访问 因为在dns解析过程,这些ip被禁止解析,所以显示无法访问 引…...
C++虚函数(八股总结)
什么是虚函数 虚函数是在父类中定义的一种特殊类型的函数,允许子类重写该函数以适应其自身需求。虚函数的调用取决于对象的实际类型,而不是指针或引用类型。通过将函数声明为虚函数,可以使继承层次结构中的每个子类都能够使用其自己的实现&a…...

vue的路由守卫逻辑处理不当导致部署在nginx上无法捕捉后端异步响应消息等问题
近期对前端的路由卫士有了更多的认识。 何为路由守卫?这可能是一种约定俗成的名称。就是VUE中的自定义函数,用来处理路由跳转。 import { createRouter, createWebHashHistory } from "vue-router";const router createRouter({history: cr…...
[备忘.OFD]OFD是什么、OFD与PDF格式文件的互转换
OFD(Open Fixed-layout Document)是一种由工业和信息化部软件司牵头中国电子技术标准化研究院制定的版式文档国家标准,属于中国的一种自主格式。OFD旨在打破政府部门和党委机关电子公文格式不统一的问题,以方便电子文档的存…...

国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...

零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...